Loading…
Combining knowledge- and data-driven methods for de-identification of clinical narratives
[Display omitted] •We present a method for automatic de-identification of clinical narratives.•We propose and validate a two-pass tagging method to improve PHI entity recognition.•We have shown that automated de-identification is comparable to human benchmark. A recent promise to access unstructured...
Saved in:
Published in: | Journal of biomedical informatics 2015-12, Vol.58 (Suppl), p.S53-S59 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-7ae2decd902cb1ca4ac6787d902548a7da8ee3f822f6bef0713366a789ab813f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-7ae2decd902cb1ca4ac6787d902548a7da8ee3f822f6bef0713366a789ab813f3 |
container_end_page | S59 |
container_issue | Suppl |
container_start_page | S53 |
container_title | Journal of biomedical informatics |
container_volume | 58 |
creator | Dehghan, Azad Kovacevic, Aleksandar Karystianis, George Keane, John A. Nenadic, Goran |
description | [Display omitted]
•We present a method for automatic de-identification of clinical narratives.•We propose and validate a two-pass tagging method to improve PHI entity recognition.•We have shown that automated de-identification is comparable to human benchmark.
A recent promise to access unstructured clinical data from electronic health records on large-scale has revitalized the interest in automated de-identification of clinical notes, which includes the identification of mentions of Protected Health Information (PHI). We describe the methods developed and evaluated as part of the i2b2/UTHealth 2014 challenge to identify PHI defined by 25 entity types in longitudinal clinical narratives. Our approach combines knowledge-driven (dictionaries and rules) and data-driven (machine learning) methods with a large range of features to address de-identification of specific named entities. In addition, we have devised a two-pass recognition approach that creates a patient-specific run-time dictionary from the PHI entities identified in the first step with high confidence, which is then used in the second pass to identify mentions that lack specific clues. The proposed method achieved the overall micro F1-measures of 91% on strict and 95% on token-level evaluation on the test dataset (514 narratives). Whilst most PHI entities can be reliably identified, particularly challenging were mentions of Organizations and Professions. Still, the overall results suggest that automated text mining methods can be used to reliably process clinical notes to identify personal information and thus providing a crucial step in large-scale de-identification of unstructured data for further clinical and epidemiological studies. |
doi_str_mv | 10.1016/j.jbi.2015.06.029 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4976126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046415001392</els_id><sourcerecordid>1785230209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-7ae2decd902cb1ca4ac6787d902548a7da8ee3f822f6bef0713366a789ab813f3</originalsourceid><addsrcrecordid>eNqNkUuPFCEUhYnROOPoD3BjWLqpEqjiFRMT0_GVTOJGF64IBZce2ioYobqN_146PXZ0Y2Z1uZfvnhw4CD2npKeEile7fjfFnhHKeyJ6wvQDdEn5wDoyKvLwfBbjBXpS644QSjkXj9EFE4ySgetL9G2TlymmmLb4e8o_Z_Bb6LBNHnu72s6XeICEF1hvsq845II9dNFDWmOIzq4xJ5wDdnPTcHbGyZbSpgeoT9GjYOcKz-7qFfr6_t2Xzcfu-vOHT5u3153jVK6dtMA8OK8JcxN1drROSCWPPR-Vld4qgCEoxoKYIBBJh0EIK5W2k6JDGK7Qm5Pu7X5awLtmrdjZ3Ja42PLLZBvNvzcp3phtPphRS0GZaAIv7wRK_rGHupolVgfzbBPkfTVUKkH1qJi6D8rZQBjR90BHrTVvHhpKT6grudYC4WyeEnMM2uxMC9ocgzZEmBZ023nx96vPG3-SbcDrEwDt7w8RiqkuQnLgYwG3Gp_jf-R_A9cmukY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749995976</pqid></control><display><type>article</type><title>Combining knowledge- and data-driven methods for de-identification of clinical narratives</title><source>Elsevier</source><creator>Dehghan, Azad ; Kovacevic, Aleksandar ; Karystianis, George ; Keane, John A. ; Nenadic, Goran</creator><creatorcontrib>Dehghan, Azad ; Kovacevic, Aleksandar ; Karystianis, George ; Keane, John A. ; Nenadic, Goran</creatorcontrib><description>[Display omitted]
•We present a method for automatic de-identification of clinical narratives.•We propose and validate a two-pass tagging method to improve PHI entity recognition.•We have shown that automated de-identification is comparable to human benchmark.
A recent promise to access unstructured clinical data from electronic health records on large-scale has revitalized the interest in automated de-identification of clinical notes, which includes the identification of mentions of Protected Health Information (PHI). We describe the methods developed and evaluated as part of the i2b2/UTHealth 2014 challenge to identify PHI defined by 25 entity types in longitudinal clinical narratives. Our approach combines knowledge-driven (dictionaries and rules) and data-driven (machine learning) methods with a large range of features to address de-identification of specific named entities. In addition, we have devised a two-pass recognition approach that creates a patient-specific run-time dictionary from the PHI entities identified in the first step with high confidence, which is then used in the second pass to identify mentions that lack specific clues. The proposed method achieved the overall micro F1-measures of 91% on strict and 95% on token-level evaluation on the test dataset (514 narratives). Whilst most PHI entities can be reliably identified, particularly challenging were mentions of Organizations and Professions. Still, the overall results suggest that automated text mining methods can be used to reliably process clinical notes to identify personal information and thus providing a crucial step in large-scale de-identification of unstructured data for further clinical and epidemiological studies.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2015.06.029</identifier><identifier>PMID: 26210359</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Automation ; Clinical text mining ; Cohort Studies ; Computer Security ; Computer Simulation ; Confidence ; Confidentiality ; Data Mining - methods ; De-identification ; Dictionaries ; Electronic health record ; Electronic Health Records - organization & administration ; Information dissemination ; Information extraction ; Machine Learning ; Models, Statistical ; Named entity recognition ; Narration ; Narratives ; Natural Language Processing ; Pattern Recognition, Automated - methods ; Profession ; Texts ; United Kingdom ; Unstructured data ; Vocabulary, Controlled</subject><ispartof>Journal of biomedical informatics, 2015-12, Vol.58 (Suppl), p.S53-S59</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-7ae2decd902cb1ca4ac6787d902548a7da8ee3f822f6bef0713366a789ab813f3</citedby><cites>FETCH-LOGICAL-c517t-7ae2decd902cb1ca4ac6787d902548a7da8ee3f822f6bef0713366a789ab813f3</cites><orcidid>0000-0003-3491-361X ; 0000-0003-0795-5363 ; 0000-0001-7000-2835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26210359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehghan, Azad</creatorcontrib><creatorcontrib>Kovacevic, Aleksandar</creatorcontrib><creatorcontrib>Karystianis, George</creatorcontrib><creatorcontrib>Keane, John A.</creatorcontrib><creatorcontrib>Nenadic, Goran</creatorcontrib><title>Combining knowledge- and data-driven methods for de-identification of clinical narratives</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted]
•We present a method for automatic de-identification of clinical narratives.•We propose and validate a two-pass tagging method to improve PHI entity recognition.•We have shown that automated de-identification is comparable to human benchmark.
A recent promise to access unstructured clinical data from electronic health records on large-scale has revitalized the interest in automated de-identification of clinical notes, which includes the identification of mentions of Protected Health Information (PHI). We describe the methods developed and evaluated as part of the i2b2/UTHealth 2014 challenge to identify PHI defined by 25 entity types in longitudinal clinical narratives. Our approach combines knowledge-driven (dictionaries and rules) and data-driven (machine learning) methods with a large range of features to address de-identification of specific named entities. In addition, we have devised a two-pass recognition approach that creates a patient-specific run-time dictionary from the PHI entities identified in the first step with high confidence, which is then used in the second pass to identify mentions that lack specific clues. The proposed method achieved the overall micro F1-measures of 91% on strict and 95% on token-level evaluation on the test dataset (514 narratives). Whilst most PHI entities can be reliably identified, particularly challenging were mentions of Organizations and Professions. Still, the overall results suggest that automated text mining methods can be used to reliably process clinical notes to identify personal information and thus providing a crucial step in large-scale de-identification of unstructured data for further clinical and epidemiological studies.</description><subject>Automation</subject><subject>Clinical text mining</subject><subject>Cohort Studies</subject><subject>Computer Security</subject><subject>Computer Simulation</subject><subject>Confidence</subject><subject>Confidentiality</subject><subject>Data Mining - methods</subject><subject>De-identification</subject><subject>Dictionaries</subject><subject>Electronic health record</subject><subject>Electronic Health Records - organization & administration</subject><subject>Information dissemination</subject><subject>Information extraction</subject><subject>Machine Learning</subject><subject>Models, Statistical</subject><subject>Named entity recognition</subject><subject>Narration</subject><subject>Narratives</subject><subject>Natural Language Processing</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Profession</subject><subject>Texts</subject><subject>United Kingdom</subject><subject>Unstructured data</subject><subject>Vocabulary, Controlled</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUuPFCEUhYnROOPoD3BjWLqpEqjiFRMT0_GVTOJGF64IBZce2ioYobqN_146PXZ0Y2Z1uZfvnhw4CD2npKeEile7fjfFnhHKeyJ6wvQDdEn5wDoyKvLwfBbjBXpS644QSjkXj9EFE4ySgetL9G2TlymmmLb4e8o_Z_Bb6LBNHnu72s6XeICEF1hvsq845II9dNFDWmOIzq4xJ5wDdnPTcHbGyZbSpgeoT9GjYOcKz-7qFfr6_t2Xzcfu-vOHT5u3153jVK6dtMA8OK8JcxN1drROSCWPPR-Vld4qgCEoxoKYIBBJh0EIK5W2k6JDGK7Qm5Pu7X5awLtmrdjZ3Ja42PLLZBvNvzcp3phtPphRS0GZaAIv7wRK_rGHupolVgfzbBPkfTVUKkH1qJi6D8rZQBjR90BHrTVvHhpKT6grudYC4WyeEnMM2uxMC9ocgzZEmBZ023nx96vPG3-SbcDrEwDt7w8RiqkuQnLgYwG3Gp_jf-R_A9cmukY</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Dehghan, Azad</creator><creator>Kovacevic, Aleksandar</creator><creator>Karystianis, George</creator><creator>Keane, John A.</creator><creator>Nenadic, Goran</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3491-361X</orcidid><orcidid>https://orcid.org/0000-0003-0795-5363</orcidid><orcidid>https://orcid.org/0000-0001-7000-2835</orcidid></search><sort><creationdate>20151201</creationdate><title>Combining knowledge- and data-driven methods for de-identification of clinical narratives</title><author>Dehghan, Azad ; Kovacevic, Aleksandar ; Karystianis, George ; Keane, John A. ; Nenadic, Goran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-7ae2decd902cb1ca4ac6787d902548a7da8ee3f822f6bef0713366a789ab813f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automation</topic><topic>Clinical text mining</topic><topic>Cohort Studies</topic><topic>Computer Security</topic><topic>Computer Simulation</topic><topic>Confidence</topic><topic>Confidentiality</topic><topic>Data Mining - methods</topic><topic>De-identification</topic><topic>Dictionaries</topic><topic>Electronic health record</topic><topic>Electronic Health Records - organization & administration</topic><topic>Information dissemination</topic><topic>Information extraction</topic><topic>Machine Learning</topic><topic>Models, Statistical</topic><topic>Named entity recognition</topic><topic>Narration</topic><topic>Narratives</topic><topic>Natural Language Processing</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Profession</topic><topic>Texts</topic><topic>United Kingdom</topic><topic>Unstructured data</topic><topic>Vocabulary, Controlled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, Azad</creatorcontrib><creatorcontrib>Kovacevic, Aleksandar</creatorcontrib><creatorcontrib>Karystianis, George</creatorcontrib><creatorcontrib>Keane, John A.</creatorcontrib><creatorcontrib>Nenadic, Goran</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehghan, Azad</au><au>Kovacevic, Aleksandar</au><au>Karystianis, George</au><au>Keane, John A.</au><au>Nenadic, Goran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining knowledge- and data-driven methods for de-identification of clinical narratives</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>58</volume><issue>Suppl</issue><spage>S53</spage><epage>S59</epage><pages>S53-S59</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>[Display omitted]
•We present a method for automatic de-identification of clinical narratives.•We propose and validate a two-pass tagging method to improve PHI entity recognition.•We have shown that automated de-identification is comparable to human benchmark.
A recent promise to access unstructured clinical data from electronic health records on large-scale has revitalized the interest in automated de-identification of clinical notes, which includes the identification of mentions of Protected Health Information (PHI). We describe the methods developed and evaluated as part of the i2b2/UTHealth 2014 challenge to identify PHI defined by 25 entity types in longitudinal clinical narratives. Our approach combines knowledge-driven (dictionaries and rules) and data-driven (machine learning) methods with a large range of features to address de-identification of specific named entities. In addition, we have devised a two-pass recognition approach that creates a patient-specific run-time dictionary from the PHI entities identified in the first step with high confidence, which is then used in the second pass to identify mentions that lack specific clues. The proposed method achieved the overall micro F1-measures of 91% on strict and 95% on token-level evaluation on the test dataset (514 narratives). Whilst most PHI entities can be reliably identified, particularly challenging were mentions of Organizations and Professions. Still, the overall results suggest that automated text mining methods can be used to reliably process clinical notes to identify personal information and thus providing a crucial step in large-scale de-identification of unstructured data for further clinical and epidemiological studies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26210359</pmid><doi>10.1016/j.jbi.2015.06.029</doi><orcidid>https://orcid.org/0000-0003-3491-361X</orcidid><orcidid>https://orcid.org/0000-0003-0795-5363</orcidid><orcidid>https://orcid.org/0000-0001-7000-2835</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0464 |
ispartof | Journal of biomedical informatics, 2015-12, Vol.58 (Suppl), p.S53-S59 |
issn | 1532-0464 1532-0480 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4976126 |
source | Elsevier |
subjects | Automation Clinical text mining Cohort Studies Computer Security Computer Simulation Confidence Confidentiality Data Mining - methods De-identification Dictionaries Electronic health record Electronic Health Records - organization & administration Information dissemination Information extraction Machine Learning Models, Statistical Named entity recognition Narration Narratives Natural Language Processing Pattern Recognition, Automated - methods Profession Texts United Kingdom Unstructured data Vocabulary, Controlled |
title | Combining knowledge- and data-driven methods for de-identification of clinical narratives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20knowledge-%20and%20data-driven%20methods%20for%20de-identification%20of%20clinical%20narratives&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Dehghan,%20Azad&rft.date=2015-12-01&rft.volume=58&rft.issue=Suppl&rft.spage=S53&rft.epage=S59&rft.pages=S53-S59&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2015.06.029&rft_dat=%3Cproquest_pubme%3E1785230209%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-7ae2decd902cb1ca4ac6787d902548a7da8ee3f822f6bef0713366a789ab813f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1749995976&rft_id=info:pmid/26210359&rfr_iscdi=true |