Loading…

PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges

Background: Prostate-specific membrane antigen (PSMA) is a cell surface enzyme that is highly expressed in prostate cancer (PCa) and is currently being extensively explored as a promising target for molecular imaging in a variety of clinical contexts. Novel antibody and small-molecule PSMA radiotrac...

Full description

Saved in:
Bibliographic Details
Published in:Prostate cancer and prostatic diseases 2016-09, Vol.19 (3), p.223-230
Main Authors: Rowe, S P, Gorin, M A, Allaf, M E, Pienta, K J, Tran, P T, Pomper, M G, Ross, A E, Cho, S Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Prostate-specific membrane antigen (PSMA) is a cell surface enzyme that is highly expressed in prostate cancer (PCa) and is currently being extensively explored as a promising target for molecular imaging in a variety of clinical contexts. Novel antibody and small-molecule PSMA radiotracers labeled with a variety of radionuclides for positron emission tomography (PET) imaging applications have been developed and explored in recent studies. Methods: A great deal of progress has been made in defining the clinical utility of this class of PET agents through predominantly small and retrospective clinical studies. The most compelling data to date has been in the setting of biochemically recurrent PCa, where PSMA-targeted radiotracers have been found to be superior to conventional imaging and other molecular imaging agents for the detection of locally recurrent and metastatic PCa. Results: Early data, however, suggest that initial lymph node staging before definitive therapy in high-risk primary PCa patients may be limited, although intraoperative guidance may still hold promise. Other examples of potential promising applications for PSMA PET imaging include non-invasive characterization of primary PCa, staging and treatment planning for PSMA-targeted radiotherapeutics, and guidance of focal therapy for oligometastatic disease. Conclusions: However, all of these indications and applications for PCa PSMA PET imaging are still lacking and require large, prospective, systematic clinical trials for validation. Such validation trials are needed and hopefully will be forthcoming as the fields of molecular imaging, urology, radiation oncology and medical oncology continue to define and refine the utility of PSMA-targeted PET imaging to improve the management of PCa patients.
ISSN:1365-7852
1476-5608
DOI:10.1038/pcan.2016.13