Loading…
Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics
To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2016-08, Vol.113 (33), p.9182-9186 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-4e69d5fd6556e9b4d9cd4a492e5cfe3dd926044b5e3bbb4f7f002d0177a2930c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-4e69d5fd6556e9b4d9cd4a492e5cfe3dd926044b5e3bbb4f7f002d0177a2930c3 |
container_end_page | 9186 |
container_issue | 33 |
container_start_page | 9182 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Ding, Yang Batista, Bruno Steinbock, Oliver Cartwright, Julyan H. E. Cardoso, Silvana S. S. |
description | To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms. |
doi_str_mv | 10.1073/pnas.1607828113 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4995959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26471402</jstor_id><sourcerecordid>26471402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4e69d5fd6556e9b4d9cd4a492e5cfe3dd926044b5e3bbb4f7f002d0177a2930c3</originalsourceid><addsrcrecordid>eNpdkctr3DAQxkVpaTaPc08tgl56caLHWLIugRDSpBDopSVHIUvjXS-2tZW8Kfnvo2XzaMoc5jC_-ZhvPkI-cXbKmZZnm8nlU66YbkTDuXxHFpwZXikw7D1ZMCZ01YCAA3KY85oxZuqGfSQHQkOjBDQLcn7n7h_oiGOb3ISZuinQeYV0meLfeUWTm5HGjjq6GdzkEvUrHHvvBrp0KeB0TD50bsh48tSPyO_vV78ub6rbn9c_Li9uKw8g5wpQmVB3QdW1QtNCMD6AAyOw9h3KEIxQDKCtUbZtC53uyumBca2dMJJ5eUTO97qbbTti8DjNyQ12k_rRpQcbXW_fTqZ-ZZfx3oIxdaki8O1JIMU_W8yzHfvscSiuMG6z5Q0XAFxxXdCv_6HruE1TsbejZPkbKCjU2Z7yKeacsHs5hjO7y8busrGv2ZSNL_96eOGfwyjA5z2wznNMr3MFmgMT8hFW65QT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813624464</pqid></control><display><type>article</type><title>Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Ding, Yang ; Batista, Bruno ; Steinbock, Oliver ; Cartwright, Julyan H. E. ; Cardoso, Silvana S. S.</creator><creatorcontrib>Ding, Yang ; Batista, Bruno ; Steinbock, Oliver ; Cartwright, Julyan H. E. ; Cardoso, Silvana S. S.</creatorcontrib><description>To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1607828113</identifier><identifier>PMID: 27486248</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bioenergetics ; Cells ; Diffusion ; Energy Metabolism ; Hydrothermal Vents ; Ions ; Lab-On-A-Chip Devices ; Membranes, Artificial ; Metals ; Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-08, Vol.113 (33), p.9182-9186</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 16, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4e69d5fd6556e9b4d9cd4a492e5cfe3dd926044b5e3bbb4f7f002d0177a2930c3</citedby><cites>FETCH-LOGICAL-c443t-4e69d5fd6556e9b4d9cd4a492e5cfe3dd926044b5e3bbb4f7f002d0177a2930c3</cites><orcidid>0000-0001-7392-0957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26471402$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26471402$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27486248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Batista, Bruno</creatorcontrib><creatorcontrib>Steinbock, Oliver</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E.</creatorcontrib><creatorcontrib>Cardoso, Silvana S. S.</creatorcontrib><title>Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms.</description><subject>Bioenergetics</subject><subject>Cells</subject><subject>Diffusion</subject><subject>Energy Metabolism</subject><subject>Hydrothermal Vents</subject><subject>Ions</subject><subject>Lab-On-A-Chip Devices</subject><subject>Membranes, Artificial</subject><subject>Metals</subject><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkctr3DAQxkVpaTaPc08tgl56caLHWLIugRDSpBDopSVHIUvjXS-2tZW8Kfnvo2XzaMoc5jC_-ZhvPkI-cXbKmZZnm8nlU66YbkTDuXxHFpwZXikw7D1ZMCZ01YCAA3KY85oxZuqGfSQHQkOjBDQLcn7n7h_oiGOb3ISZuinQeYV0meLfeUWTm5HGjjq6GdzkEvUrHHvvBrp0KeB0TD50bsh48tSPyO_vV78ub6rbn9c_Li9uKw8g5wpQmVB3QdW1QtNCMD6AAyOw9h3KEIxQDKCtUbZtC53uyumBca2dMJJ5eUTO97qbbTti8DjNyQ12k_rRpQcbXW_fTqZ-ZZfx3oIxdaki8O1JIMU_W8yzHfvscSiuMG6z5Q0XAFxxXdCv_6HruE1TsbejZPkbKCjU2Z7yKeacsHs5hjO7y8busrGv2ZSNL_96eOGfwyjA5z2wznNMr3MFmgMT8hFW65QT</recordid><startdate>20160816</startdate><enddate>20160816</enddate><creator>Ding, Yang</creator><creator>Batista, Bruno</creator><creator>Steinbock, Oliver</creator><creator>Cartwright, Julyan H. E.</creator><creator>Cardoso, Silvana S. S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7392-0957</orcidid></search><sort><creationdate>20160816</creationdate><title>Wavy membranes and the growth rate of a planar chemical garden</title><author>Ding, Yang ; Batista, Bruno ; Steinbock, Oliver ; Cartwright, Julyan H. E. ; Cardoso, Silvana S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4e69d5fd6556e9b4d9cd4a492e5cfe3dd926044b5e3bbb4f7f002d0177a2930c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioenergetics</topic><topic>Cells</topic><topic>Diffusion</topic><topic>Energy Metabolism</topic><topic>Hydrothermal Vents</topic><topic>Ions</topic><topic>Lab-On-A-Chip Devices</topic><topic>Membranes, Artificial</topic><topic>Metals</topic><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Batista, Bruno</creatorcontrib><creatorcontrib>Steinbock, Oliver</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E.</creatorcontrib><creatorcontrib>Cardoso, Silvana S. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yang</au><au>Batista, Bruno</au><au>Steinbock, Oliver</au><au>Cartwright, Julyan H. E.</au><au>Cardoso, Silvana S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-08-16</date><risdate>2016</risdate><volume>113</volume><issue>33</issue><spage>9182</spage><epage>9186</epage><pages>9182-9186</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27486248</pmid><doi>10.1073/pnas.1607828113</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7392-0957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-08, Vol.113 (33), p.9182-9186 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4995959 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Bioenergetics Cells Diffusion Energy Metabolism Hydrothermal Vents Ions Lab-On-A-Chip Devices Membranes, Artificial Metals Physical Sciences |
title | Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T03%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavy%20membranes%20and%20the%20growth%20rate%20of%20a%20planar%20chemical%20garden:%20Enhanced%20diffusion%20and%20bioenergetics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ding,%20Yang&rft.date=2016-08-16&rft.volume=113&rft.issue=33&rft.spage=9182&rft.epage=9186&rft.pages=9182-9186&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1607828113&rft_dat=%3Cjstor_pubme%3E26471402%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-4e69d5fd6556e9b4d9cd4a492e5cfe3dd926044b5e3bbb4f7f002d0177a2930c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1813624464&rft_id=info:pmid/27486248&rft_jstor_id=26471402&rfr_iscdi=true |