Loading…
Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis
Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a ma...
Saved in:
Published in: | Journal of autoimmunity 2016-09, Vol.73, p.73-84 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053 |
---|---|
cites | cdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053 |
container_end_page | 84 |
container_issue | |
container_start_page | 73 |
container_title | Journal of autoimmunity |
container_volume | 73 |
creator | Wu, Dennis J Gu, Ran Sarin, Ritu Zavodovskaya, Regina Chen, Chia-Pei Christiansen, Blaine A Adamopoulos, Iannis E |
description | Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases. |
doi_str_mv | 10.1016/j.jaut.2016.06.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0896841116300828</els_id><sourcerecordid>1815370636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</originalsourceid><addsrcrecordid>eNqNUl2LEzEUDaK4tfoHfJB59GXqzWQyHyALZd2uYlFYV2WfQprcadOdJjXJrPTfb4aui_ogkgu5kHPOTXIOIS8pzCjQ6s12tpVDnBWpn0EqKB-RCYWW5y3l9WMygaat8qak9IQ8C2ELQCnn_Ck5KWrGAIpmQvx8iG6_ketD3ht7gzpbXH87z5SzURpr7DrbexfR2Oz7u8U1y4yN6KWKIftp4ia7upwvqkxane2cHnoZMWSX808fl7mxelBJzoWITvUyRLdGi8GE5-RJJ_uAL-73Kfm6OL86e58vP198OJsvc8VLFnNGESsooMaaasUKLDjXrK4BO815q9tV261UJ5WUjW7rYlVBoziWDbZVx4GzKTk96u6H1Q61Qhu97MXem530B-GkEX-eWLMRa3crOACr05qS1_cC3v0YMESxM0Fh30uLbgiCNrSlrCqh-h8oZ3UCjtDiCFXeheCxe7gRBTH6KrZi9FWMvgpIBWUivfr9LQ-UX0YmwNsjANOP3hr0IiiDNjlgPKootDP_1j_9i65SHIyS_Q0eMGzd4G3ySlARCgHiy5isMVi0SuObNP8OqXfKpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815370636</pqid></control><display><type>article</type><title>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</title><source>ScienceDirect Journals</source><creator>Wu, Dennis J ; Gu, Ran ; Sarin, Ritu ; Zavodovskaya, Regina ; Chen, Chia-Pei ; Christiansen, Blaine A ; Adamopoulos, Iannis E</creator><creatorcontrib>Wu, Dennis J ; Gu, Ran ; Sarin, Ritu ; Zavodovskaya, Regina ; Chen, Chia-Pei ; Christiansen, Blaine A ; Adamopoulos, Iannis E</creatorcontrib><description>Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.</description><identifier>ISSN: 0896-8411</identifier><identifier>EISSN: 1095-9157</identifier><identifier>DOI: 10.1016/j.jaut.2016.06.004</identifier><identifier>PMID: 27330028</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptor Proteins, Signal Transducing ; Allergy and Immunology ; Animals ; Autophagy ; Autophagy - physiology ; Autophagy-linked FYVE containing protein ; Autophagy-Related Proteins ; Blotting, Western ; Bone Resorption - metabolism ; Cathepsin K - metabolism ; Cell Differentiation ; Cells, Cultured ; Femur - diagnostic imaging ; Gene Transfer Techniques ; Giant Cells - metabolism ; Macrophages - metabolism ; Matrix Metalloproteinase 9 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Musculoskeletal diseases ; NF-kappa B - metabolism ; Osteoblasts ; Osteoclast ; Osteoclasts - physiology ; Osteogenesis - physiology ; Primary Cell Culture ; RANK Ligand - genetics ; RANK Ligand - metabolism ; Signal Transduction ; Tartrate-Resistant Acid Phosphatase - blood ; Tartrate-Resistant Acid Phosphatase - metabolism ; TNF Receptor-Associated Factor 6 - metabolism ; TRAF6 ; Up-Regulation ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism ; WDFY3 ; X-Ray Microtomography</subject><ispartof>Journal of autoimmunity, 2016-09, Vol.73, p.73-84</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</citedby><cites>FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</cites><orcidid>0000-0001-9876-0419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27330028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Dennis J</creatorcontrib><creatorcontrib>Gu, Ran</creatorcontrib><creatorcontrib>Sarin, Ritu</creatorcontrib><creatorcontrib>Zavodovskaya, Regina</creatorcontrib><creatorcontrib>Chen, Chia-Pei</creatorcontrib><creatorcontrib>Christiansen, Blaine A</creatorcontrib><creatorcontrib>Adamopoulos, Iannis E</creatorcontrib><title>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</title><title>Journal of autoimmunity</title><addtitle>J Autoimmun</addtitle><description>Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Allergy and Immunology</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Autophagy-linked FYVE containing protein</subject><subject>Autophagy-Related Proteins</subject><subject>Blotting, Western</subject><subject>Bone Resorption - metabolism</subject><subject>Cathepsin K - metabolism</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Femur - diagnostic imaging</subject><subject>Gene Transfer Techniques</subject><subject>Giant Cells - metabolism</subject><subject>Macrophages - metabolism</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Musculoskeletal diseases</subject><subject>NF-kappa B - metabolism</subject><subject>Osteoblasts</subject><subject>Osteoclast</subject><subject>Osteoclasts - physiology</subject><subject>Osteogenesis - physiology</subject><subject>Primary Cell Culture</subject><subject>RANK Ligand - genetics</subject><subject>RANK Ligand - metabolism</subject><subject>Signal Transduction</subject><subject>Tartrate-Resistant Acid Phosphatase - blood</subject><subject>Tartrate-Resistant Acid Phosphatase - metabolism</subject><subject>TNF Receptor-Associated Factor 6 - metabolism</subject><subject>TRAF6</subject><subject>Up-Regulation</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>WDFY3</subject><subject>X-Ray Microtomography</subject><issn>0896-8411</issn><issn>1095-9157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUl2LEzEUDaK4tfoHfJB59GXqzWQyHyALZd2uYlFYV2WfQprcadOdJjXJrPTfb4aui_ogkgu5kHPOTXIOIS8pzCjQ6s12tpVDnBWpn0EqKB-RCYWW5y3l9WMygaat8qak9IQ8C2ELQCnn_Ck5KWrGAIpmQvx8iG6_ketD3ht7gzpbXH87z5SzURpr7DrbexfR2Oz7u8U1y4yN6KWKIftp4ia7upwvqkxane2cHnoZMWSX808fl7mxelBJzoWITvUyRLdGi8GE5-RJJ_uAL-73Kfm6OL86e58vP198OJsvc8VLFnNGESsooMaaasUKLDjXrK4BO815q9tV261UJ5WUjW7rYlVBoziWDbZVx4GzKTk96u6H1Q61Qhu97MXem530B-GkEX-eWLMRa3crOACr05qS1_cC3v0YMESxM0Fh30uLbgiCNrSlrCqh-h8oZ3UCjtDiCFXeheCxe7gRBTH6KrZi9FWMvgpIBWUivfr9LQ-UX0YmwNsjANOP3hr0IiiDNjlgPKootDP_1j_9i65SHIyS_Q0eMGzd4G3ySlARCgHiy5isMVi0SuObNP8OqXfKpg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Wu, Dennis J</creator><creator>Gu, Ran</creator><creator>Sarin, Ritu</creator><creator>Zavodovskaya, Regina</creator><creator>Chen, Chia-Pei</creator><creator>Christiansen, Blaine A</creator><creator>Adamopoulos, Iannis E</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9876-0419</orcidid></search><sort><creationdate>20160901</creationdate><title>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</title><author>Wu, Dennis J ; Gu, Ran ; Sarin, Ritu ; Zavodovskaya, Regina ; Chen, Chia-Pei ; Christiansen, Blaine A ; Adamopoulos, Iannis E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Allergy and Immunology</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Autophagy-linked FYVE containing protein</topic><topic>Autophagy-Related Proteins</topic><topic>Blotting, Western</topic><topic>Bone Resorption - metabolism</topic><topic>Cathepsin K - metabolism</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Femur - diagnostic imaging</topic><topic>Gene Transfer Techniques</topic><topic>Giant Cells - metabolism</topic><topic>Macrophages - metabolism</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Musculoskeletal diseases</topic><topic>NF-kappa B - metabolism</topic><topic>Osteoblasts</topic><topic>Osteoclast</topic><topic>Osteoclasts - physiology</topic><topic>Osteogenesis - physiology</topic><topic>Primary Cell Culture</topic><topic>RANK Ligand - genetics</topic><topic>RANK Ligand - metabolism</topic><topic>Signal Transduction</topic><topic>Tartrate-Resistant Acid Phosphatase - blood</topic><topic>Tartrate-Resistant Acid Phosphatase - metabolism</topic><topic>TNF Receptor-Associated Factor 6 - metabolism</topic><topic>TRAF6</topic><topic>Up-Regulation</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>WDFY3</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dennis J</creatorcontrib><creatorcontrib>Gu, Ran</creatorcontrib><creatorcontrib>Sarin, Ritu</creatorcontrib><creatorcontrib>Zavodovskaya, Regina</creatorcontrib><creatorcontrib>Chen, Chia-Pei</creatorcontrib><creatorcontrib>Christiansen, Blaine A</creatorcontrib><creatorcontrib>Adamopoulos, Iannis E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of autoimmunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dennis J</au><au>Gu, Ran</au><au>Sarin, Ritu</au><au>Zavodovskaya, Regina</au><au>Chen, Chia-Pei</au><au>Christiansen, Blaine A</au><au>Adamopoulos, Iannis E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</atitle><jtitle>Journal of autoimmunity</jtitle><addtitle>J Autoimmun</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>73</volume><spage>73</spage><epage>84</epage><pages>73-84</pages><issn>0896-8411</issn><eissn>1095-9157</eissn><abstract>Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27330028</pmid><doi>10.1016/j.jaut.2016.06.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9876-0419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-8411 |
ispartof | Journal of autoimmunity, 2016-09, Vol.73, p.73-84 |
issn | 0896-8411 1095-9157 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003737 |
source | ScienceDirect Journals |
subjects | Adaptor Proteins, Signal Transducing Allergy and Immunology Animals Autophagy Autophagy - physiology Autophagy-linked FYVE containing protein Autophagy-Related Proteins Blotting, Western Bone Resorption - metabolism Cathepsin K - metabolism Cell Differentiation Cells, Cultured Femur - diagnostic imaging Gene Transfer Techniques Giant Cells - metabolism Macrophages - metabolism Matrix Metalloproteinase 9 - metabolism Mice Mice, Inbred C57BL Mice, Knockout Musculoskeletal diseases NF-kappa B - metabolism Osteoblasts Osteoclast Osteoclasts - physiology Osteogenesis - physiology Primary Cell Culture RANK Ligand - genetics RANK Ligand - metabolism Signal Transduction Tartrate-Resistant Acid Phosphatase - blood Tartrate-Resistant Acid Phosphatase - metabolism TNF Receptor-Associated Factor 6 - metabolism TRAF6 Up-Regulation Vesicular Transport Proteins - genetics Vesicular Transport Proteins - metabolism WDFY3 X-Ray Microtomography |
title | Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy-linked%20FYVE%20containing%20protein%20WDFY3%20interacts%20with%20TRAF6%20and%20modulates%20RANKL-induced%20osteoclastogenesis&rft.jtitle=Journal%20of%20autoimmunity&rft.au=Wu,%20Dennis%20J&rft.date=2016-09-01&rft.volume=73&rft.spage=73&rft.epage=84&rft.pages=73-84&rft.issn=0896-8411&rft.eissn=1095-9157&rft_id=info:doi/10.1016/j.jaut.2016.06.004&rft_dat=%3Cproquest_pubme%3E1815370636%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815370636&rft_id=info:pmid/27330028&rfr_iscdi=true |