Loading…

Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis

Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a ma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of autoimmunity 2016-09, Vol.73, p.73-84
Main Authors: Wu, Dennis J, Gu, Ran, Sarin, Ritu, Zavodovskaya, Regina, Chen, Chia-Pei, Christiansen, Blaine A, Adamopoulos, Iannis E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053
cites cdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053
container_end_page 84
container_issue
container_start_page 73
container_title Journal of autoimmunity
container_volume 73
creator Wu, Dennis J
Gu, Ran
Sarin, Ritu
Zavodovskaya, Regina
Chen, Chia-Pei
Christiansen, Blaine A
Adamopoulos, Iannis E
description Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.
doi_str_mv 10.1016/j.jaut.2016.06.004
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0896841116300828</els_id><sourcerecordid>1815370636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</originalsourceid><addsrcrecordid>eNqNUl2LEzEUDaK4tfoHfJB59GXqzWQyHyALZd2uYlFYV2WfQprcadOdJjXJrPTfb4aui_ogkgu5kHPOTXIOIS8pzCjQ6s12tpVDnBWpn0EqKB-RCYWW5y3l9WMygaat8qak9IQ8C2ELQCnn_Ck5KWrGAIpmQvx8iG6_ketD3ht7gzpbXH87z5SzURpr7DrbexfR2Oz7u8U1y4yN6KWKIftp4ia7upwvqkxane2cHnoZMWSX808fl7mxelBJzoWITvUyRLdGi8GE5-RJJ_uAL-73Kfm6OL86e58vP198OJsvc8VLFnNGESsooMaaasUKLDjXrK4BO815q9tV261UJ5WUjW7rYlVBoziWDbZVx4GzKTk96u6H1Q61Qhu97MXem530B-GkEX-eWLMRa3crOACr05qS1_cC3v0YMESxM0Fh30uLbgiCNrSlrCqh-h8oZ3UCjtDiCFXeheCxe7gRBTH6KrZi9FWMvgpIBWUivfr9LQ-UX0YmwNsjANOP3hr0IiiDNjlgPKootDP_1j_9i65SHIyS_Q0eMGzd4G3ySlARCgHiy5isMVi0SuObNP8OqXfKpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815370636</pqid></control><display><type>article</type><title>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</title><source>ScienceDirect Journals</source><creator>Wu, Dennis J ; Gu, Ran ; Sarin, Ritu ; Zavodovskaya, Regina ; Chen, Chia-Pei ; Christiansen, Blaine A ; Adamopoulos, Iannis E</creator><creatorcontrib>Wu, Dennis J ; Gu, Ran ; Sarin, Ritu ; Zavodovskaya, Regina ; Chen, Chia-Pei ; Christiansen, Blaine A ; Adamopoulos, Iannis E</creatorcontrib><description>Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.</description><identifier>ISSN: 0896-8411</identifier><identifier>EISSN: 1095-9157</identifier><identifier>DOI: 10.1016/j.jaut.2016.06.004</identifier><identifier>PMID: 27330028</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptor Proteins, Signal Transducing ; Allergy and Immunology ; Animals ; Autophagy ; Autophagy - physiology ; Autophagy-linked FYVE containing protein ; Autophagy-Related Proteins ; Blotting, Western ; Bone Resorption - metabolism ; Cathepsin K - metabolism ; Cell Differentiation ; Cells, Cultured ; Femur - diagnostic imaging ; Gene Transfer Techniques ; Giant Cells - metabolism ; Macrophages - metabolism ; Matrix Metalloproteinase 9 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Musculoskeletal diseases ; NF-kappa B - metabolism ; Osteoblasts ; Osteoclast ; Osteoclasts - physiology ; Osteogenesis - physiology ; Primary Cell Culture ; RANK Ligand - genetics ; RANK Ligand - metabolism ; Signal Transduction ; Tartrate-Resistant Acid Phosphatase - blood ; Tartrate-Resistant Acid Phosphatase - metabolism ; TNF Receptor-Associated Factor 6 - metabolism ; TRAF6 ; Up-Regulation ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism ; WDFY3 ; X-Ray Microtomography</subject><ispartof>Journal of autoimmunity, 2016-09, Vol.73, p.73-84</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</citedby><cites>FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</cites><orcidid>0000-0001-9876-0419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27330028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Dennis J</creatorcontrib><creatorcontrib>Gu, Ran</creatorcontrib><creatorcontrib>Sarin, Ritu</creatorcontrib><creatorcontrib>Zavodovskaya, Regina</creatorcontrib><creatorcontrib>Chen, Chia-Pei</creatorcontrib><creatorcontrib>Christiansen, Blaine A</creatorcontrib><creatorcontrib>Adamopoulos, Iannis E</creatorcontrib><title>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</title><title>Journal of autoimmunity</title><addtitle>J Autoimmun</addtitle><description>Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Allergy and Immunology</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Autophagy-linked FYVE containing protein</subject><subject>Autophagy-Related Proteins</subject><subject>Blotting, Western</subject><subject>Bone Resorption - metabolism</subject><subject>Cathepsin K - metabolism</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Femur - diagnostic imaging</subject><subject>Gene Transfer Techniques</subject><subject>Giant Cells - metabolism</subject><subject>Macrophages - metabolism</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Musculoskeletal diseases</subject><subject>NF-kappa B - metabolism</subject><subject>Osteoblasts</subject><subject>Osteoclast</subject><subject>Osteoclasts - physiology</subject><subject>Osteogenesis - physiology</subject><subject>Primary Cell Culture</subject><subject>RANK Ligand - genetics</subject><subject>RANK Ligand - metabolism</subject><subject>Signal Transduction</subject><subject>Tartrate-Resistant Acid Phosphatase - blood</subject><subject>Tartrate-Resistant Acid Phosphatase - metabolism</subject><subject>TNF Receptor-Associated Factor 6 - metabolism</subject><subject>TRAF6</subject><subject>Up-Regulation</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>WDFY3</subject><subject>X-Ray Microtomography</subject><issn>0896-8411</issn><issn>1095-9157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUl2LEzEUDaK4tfoHfJB59GXqzWQyHyALZd2uYlFYV2WfQprcadOdJjXJrPTfb4aui_ogkgu5kHPOTXIOIS8pzCjQ6s12tpVDnBWpn0EqKB-RCYWW5y3l9WMygaat8qak9IQ8C2ELQCnn_Ck5KWrGAIpmQvx8iG6_ketD3ht7gzpbXH87z5SzURpr7DrbexfR2Oz7u8U1y4yN6KWKIftp4ia7upwvqkxane2cHnoZMWSX808fl7mxelBJzoWITvUyRLdGi8GE5-RJJ_uAL-73Kfm6OL86e58vP198OJsvc8VLFnNGESsooMaaasUKLDjXrK4BO815q9tV261UJ5WUjW7rYlVBoziWDbZVx4GzKTk96u6H1Q61Qhu97MXem530B-GkEX-eWLMRa3crOACr05qS1_cC3v0YMESxM0Fh30uLbgiCNrSlrCqh-h8oZ3UCjtDiCFXeheCxe7gRBTH6KrZi9FWMvgpIBWUivfr9LQ-UX0YmwNsjANOP3hr0IiiDNjlgPKootDP_1j_9i65SHIyS_Q0eMGzd4G3ySlARCgHiy5isMVi0SuObNP8OqXfKpg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Wu, Dennis J</creator><creator>Gu, Ran</creator><creator>Sarin, Ritu</creator><creator>Zavodovskaya, Regina</creator><creator>Chen, Chia-Pei</creator><creator>Christiansen, Blaine A</creator><creator>Adamopoulos, Iannis E</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9876-0419</orcidid></search><sort><creationdate>20160901</creationdate><title>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</title><author>Wu, Dennis J ; Gu, Ran ; Sarin, Ritu ; Zavodovskaya, Regina ; Chen, Chia-Pei ; Christiansen, Blaine A ; Adamopoulos, Iannis E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Allergy and Immunology</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Autophagy-linked FYVE containing protein</topic><topic>Autophagy-Related Proteins</topic><topic>Blotting, Western</topic><topic>Bone Resorption - metabolism</topic><topic>Cathepsin K - metabolism</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Femur - diagnostic imaging</topic><topic>Gene Transfer Techniques</topic><topic>Giant Cells - metabolism</topic><topic>Macrophages - metabolism</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Musculoskeletal diseases</topic><topic>NF-kappa B - metabolism</topic><topic>Osteoblasts</topic><topic>Osteoclast</topic><topic>Osteoclasts - physiology</topic><topic>Osteogenesis - physiology</topic><topic>Primary Cell Culture</topic><topic>RANK Ligand - genetics</topic><topic>RANK Ligand - metabolism</topic><topic>Signal Transduction</topic><topic>Tartrate-Resistant Acid Phosphatase - blood</topic><topic>Tartrate-Resistant Acid Phosphatase - metabolism</topic><topic>TNF Receptor-Associated Factor 6 - metabolism</topic><topic>TRAF6</topic><topic>Up-Regulation</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>WDFY3</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dennis J</creatorcontrib><creatorcontrib>Gu, Ran</creatorcontrib><creatorcontrib>Sarin, Ritu</creatorcontrib><creatorcontrib>Zavodovskaya, Regina</creatorcontrib><creatorcontrib>Chen, Chia-Pei</creatorcontrib><creatorcontrib>Christiansen, Blaine A</creatorcontrib><creatorcontrib>Adamopoulos, Iannis E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of autoimmunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dennis J</au><au>Gu, Ran</au><au>Sarin, Ritu</au><au>Zavodovskaya, Regina</au><au>Chen, Chia-Pei</au><au>Christiansen, Blaine A</au><au>Adamopoulos, Iannis E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis</atitle><jtitle>Journal of autoimmunity</jtitle><addtitle>J Autoimmun</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>73</volume><spage>73</spage><epage>84</epage><pages>73-84</pages><issn>0896-8411</issn><eissn>1095-9157</eissn><abstract>Abstract Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice ( Wdfy3 lacZ and Wdfy3 loxP ) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice ( Wdfy3 loxP/loxP -LysM-Cre+ ) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP+ multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk , Acp5 , Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27330028</pmid><doi>10.1016/j.jaut.2016.06.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9876-0419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-8411
ispartof Journal of autoimmunity, 2016-09, Vol.73, p.73-84
issn 0896-8411
1095-9157
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003737
source ScienceDirect Journals
subjects Adaptor Proteins, Signal Transducing
Allergy and Immunology
Animals
Autophagy
Autophagy - physiology
Autophagy-linked FYVE containing protein
Autophagy-Related Proteins
Blotting, Western
Bone Resorption - metabolism
Cathepsin K - metabolism
Cell Differentiation
Cells, Cultured
Femur - diagnostic imaging
Gene Transfer Techniques
Giant Cells - metabolism
Macrophages - metabolism
Matrix Metalloproteinase 9 - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Musculoskeletal diseases
NF-kappa B - metabolism
Osteoblasts
Osteoclast
Osteoclasts - physiology
Osteogenesis - physiology
Primary Cell Culture
RANK Ligand - genetics
RANK Ligand - metabolism
Signal Transduction
Tartrate-Resistant Acid Phosphatase - blood
Tartrate-Resistant Acid Phosphatase - metabolism
TNF Receptor-Associated Factor 6 - metabolism
TRAF6
Up-Regulation
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
WDFY3
X-Ray Microtomography
title Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy-linked%20FYVE%20containing%20protein%20WDFY3%20interacts%20with%20TRAF6%20and%20modulates%20RANKL-induced%20osteoclastogenesis&rft.jtitle=Journal%20of%20autoimmunity&rft.au=Wu,%20Dennis%20J&rft.date=2016-09-01&rft.volume=73&rft.spage=73&rft.epage=84&rft.pages=73-84&rft.issn=0896-8411&rft.eissn=1095-9157&rft_id=info:doi/10.1016/j.jaut.2016.06.004&rft_dat=%3Cproquest_pubme%3E1815370636%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-31ee60207e71dc32e255d3770efd559d9b9fbcfacaa8d972b608c5e48e96f5053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815370636&rft_id=info:pmid/27330028&rfr_iscdi=true