Loading…
Formation of ridges in a stable lithosphere in mantle convection models with a viscoplastic rheology
Numerical simulations of mantle convection with a viscoplastic rheology usually display mobile, episodic or stagnant lid regimes. In this study, we report a new convective regime in which a ridge can form without destabilizing the surrounding lithosphere or forming subduction zones. Using simulation...
Saved in:
Published in: | Geophysical research letters 2015-06, Vol.42 (12), p.4770-4777 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical simulations of mantle convection with a viscoplastic rheology usually display mobile, episodic or stagnant lid regimes. In this study, we report a new convective regime in which a ridge can form without destabilizing the surrounding lithosphere or forming subduction zones. Using simulations in 2‐D spherical annulus geometry, we show that a depth‐dependent yield stress is sufficient to reach this ridge only regime. This regime occurs when the friction coefficient is close to the critical value between mobile lid and stagnant lid regimes. Maps of convective regime as a function of the parameters friction coefficients and depth dependence of viscosity are provided for both basal heating and mixed heating situations. The ridge only regime appears for both pure basal heating and mixed heating mode. For basal heating, this regime can occur for all vertical viscosity contrasts, while for mixed heating, a highly viscous deep mantle is required.
Key Points
Stable ridges can appear in the lithosphere without generating subduction zones
A depth‐dependent yield stress is necessary to obtain stable ridges
This “ridge only” regime can be found between stagnant and mobile lid regimes |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1002/2015GL063483 |