Loading…

A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation

Naturally occurring enzyme homologues often display highly divergent activity with non‐natural substrates. Exploiting this diversity with enzymes engineered for new or altered function, however, is laborious because the engineering must be replicated for each homologue. A small set of mutations of t...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2016-09, Vol.55 (38), p.11577-11581
Main Authors: Murciano-Calles, Javier, Romney, David K., Brinkmann-Chen, Sabine, Buller, Andrew R., Arnold, Frances H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5712-c2d0c7839a6feecf1ea1cf3a19358f870abb97c561c099a3706f8751e2af3c503
cites cdi_FETCH-LOGICAL-c5712-c2d0c7839a6feecf1ea1cf3a19358f870abb97c561c099a3706f8751e2af3c503
container_end_page 11581
container_issue 38
container_start_page 11577
container_title Angewandte Chemie International Edition
container_volume 55
creator Murciano-Calles, Javier
Romney, David K.
Brinkmann-Chen, Sabine
Buller, Andrew R.
Arnold, Frances H.
description Naturally occurring enzyme homologues often display highly divergent activity with non‐natural substrates. Exploiting this diversity with enzymes engineered for new or altered function, however, is laborious because the engineering must be replicated for each homologue. A small set of mutations of the tryptophan synthase β‐subunit (TrpB) from Pyrococcus furiosus, which mimics the activation afforded by binding of the α‐subunit, was demonstrated to have a similar activating effect in different TrpB homologues with as little as 57 % sequence identity. Kinetic and spectroscopic analyses indicate that the mutations function through the same mechanism: mimicry of α‐subunit binding. From these enzymes, we identified a new TrpB catalyst that displays a remarkably broad activity profile in the synthesis of 5‐substituted tryptophans. This demonstrates that allosteric activation can be recapitulated throughout a protein family to explore natural sequence diversity for desirable biocatalytic transformations. Better off alone: The tryptophan synthase enzyme complex is active toward a number of indole analogues. The β‐subunit (TrpB) performs the synthetically useful reaction but requires the α‐subunit to be fully active. Mutations from a re‐activated TrpB variant from Pyrococcus furiosus were transferred into homologous TrpB enzymes to generate a panel of stand‐alone TrpB catalysts, one of which is useful for making 5‐substituted tryptophans, an important biological motif.
doi_str_mv 10.1002/anie.201606242
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5014574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4171180641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5712-c2d0c7839a6feecf1ea1cf3a19358f870abb97c561c099a3706f8751e2af3c503</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw5YgsceGSxR_x1wVpW9rSaltAFDhaXq_TuCRxsJ2F3PjpeNmyKhzgNCO_z7ya8UxRPEVwhiDEL3Xv7AxDxCDDFb5X7COKUUk4J_dzXhFSckHRXvEoxpvMCwHZw2IPc4ogJ2S_-DEH73RvW-BrcBWGQ3DovNFJt1NMEby2wa3tCtTBd1mehuSHRvfgw9SnRkcLUhP8eN3kaLOu-1jbsLG6GJNOzvcxKzqBC9c5A-Zt62PKljk1ya1_EY-LB7Vuo31yGw-KjyfHV0dvysXb07Oj-aI0lCNcGryChgsiNautNTWyGpmaaCQJFbXgUC-XkhvKkIFSasIhy68UWaxrYigkB8Wrre8wLju7MrZPQbdqCK7TYVJeO_Wn0rtGXfu1ohBVlFfZ4MWtQfBfRxuT6lw0tm3z9_kxKiQQpwxiJDL6_C_0xo-hz-MpJKHAnFWS_JMSiHEppMSZmm0pE3yMwda7lhFUmxNQmxNQuxPIBc_uDrrDf-88A3ILfHOtnf5jp-aXZ8d3zcttrcuL_L6r1eGLYpxwqj5fnqrzxftzIk-w-kR-AkDXzis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816798992</pqid></control><display><type>article</type><title>A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation</title><source>Wiley</source><creator>Murciano-Calles, Javier ; Romney, David K. ; Brinkmann-Chen, Sabine ; Buller, Andrew R. ; Arnold, Frances H.</creator><creatorcontrib>Murciano-Calles, Javier ; Romney, David K. ; Brinkmann-Chen, Sabine ; Buller, Andrew R. ; Arnold, Frances H.</creatorcontrib><description>Naturally occurring enzyme homologues often display highly divergent activity with non‐natural substrates. Exploiting this diversity with enzymes engineered for new or altered function, however, is laborious because the engineering must be replicated for each homologue. A small set of mutations of the tryptophan synthase β‐subunit (TrpB) from Pyrococcus furiosus, which mimics the activation afforded by binding of the α‐subunit, was demonstrated to have a similar activating effect in different TrpB homologues with as little as 57 % sequence identity. Kinetic and spectroscopic analyses indicate that the mutations function through the same mechanism: mimicry of α‐subunit binding. From these enzymes, we identified a new TrpB catalyst that displays a remarkably broad activity profile in the synthesis of 5‐substituted tryptophans. This demonstrates that allosteric activation can be recapitulated throughout a protein family to explore natural sequence diversity for desirable biocatalytic transformations. Better off alone: The tryptophan synthase enzyme complex is active toward a number of indole analogues. The β‐subunit (TrpB) performs the synthetically useful reaction but requires the α‐subunit to be fully active. Mutations from a re‐activated TrpB variant from Pyrococcus furiosus were transferred into homologous TrpB enzymes to generate a panel of stand‐alone TrpB catalysts, one of which is useful for making 5‐substituted tryptophans, an important biological motif.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201606242</identifier><identifier>PMID: 27510733</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Activation ; Allosteric properties ; Allosteric Regulation ; allostery ; Binding ; Biocatalysis ; Biocatalysts ; Catalysts ; Chemical synthesis ; Displays ; Engineering ; Enzymes ; Homology ; Kinetics ; Mimicry ; Mutagenesis, Site-Directed ; Mutation ; Protein Binding ; Protein Engineering ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Pyrococcus furiosus - enzymology ; Spectroscopic analysis ; Substrates ; Transformations ; Tryptophan ; Tryptophan synthase ; Tryptophan Synthase - chemistry ; Tryptophan Synthase - genetics ; Tryptophan Synthase - metabolism</subject><ispartof>Angewandte Chemie International Edition, 2016-09, Vol.55 (38), p.11577-11581</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5712-c2d0c7839a6feecf1ea1cf3a19358f870abb97c561c099a3706f8751e2af3c503</citedby><cites>FETCH-LOGICAL-c5712-c2d0c7839a6feecf1ea1cf3a19358f870abb97c561c099a3706f8751e2af3c503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27510733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murciano-Calles, Javier</creatorcontrib><creatorcontrib>Romney, David K.</creatorcontrib><creatorcontrib>Brinkmann-Chen, Sabine</creatorcontrib><creatorcontrib>Buller, Andrew R.</creatorcontrib><creatorcontrib>Arnold, Frances H.</creatorcontrib><title>A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Naturally occurring enzyme homologues often display highly divergent activity with non‐natural substrates. Exploiting this diversity with enzymes engineered for new or altered function, however, is laborious because the engineering must be replicated for each homologue. A small set of mutations of the tryptophan synthase β‐subunit (TrpB) from Pyrococcus furiosus, which mimics the activation afforded by binding of the α‐subunit, was demonstrated to have a similar activating effect in different TrpB homologues with as little as 57 % sequence identity. Kinetic and spectroscopic analyses indicate that the mutations function through the same mechanism: mimicry of α‐subunit binding. From these enzymes, we identified a new TrpB catalyst that displays a remarkably broad activity profile in the synthesis of 5‐substituted tryptophans. This demonstrates that allosteric activation can be recapitulated throughout a protein family to explore natural sequence diversity for desirable biocatalytic transformations. Better off alone: The tryptophan synthase enzyme complex is active toward a number of indole analogues. The β‐subunit (TrpB) performs the synthetically useful reaction but requires the α‐subunit to be fully active. Mutations from a re‐activated TrpB variant from Pyrococcus furiosus were transferred into homologous TrpB enzymes to generate a panel of stand‐alone TrpB catalysts, one of which is useful for making 5‐substituted tryptophans, an important biological motif.</description><subject>Activation</subject><subject>Allosteric properties</subject><subject>Allosteric Regulation</subject><subject>allostery</subject><subject>Binding</subject><subject>Biocatalysis</subject><subject>Biocatalysts</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Displays</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Homology</subject><subject>Kinetics</subject><subject>Mimicry</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Engineering</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Spectroscopic analysis</subject><subject>Substrates</subject><subject>Transformations</subject><subject>Tryptophan</subject><subject>Tryptophan synthase</subject><subject>Tryptophan Synthase - chemistry</subject><subject>Tryptophan Synthase - genetics</subject><subject>Tryptophan Synthase - metabolism</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEoqVw5YgsceGSxR_x1wVpW9rSaltAFDhaXq_TuCRxsJ2F3PjpeNmyKhzgNCO_z7ya8UxRPEVwhiDEL3Xv7AxDxCDDFb5X7COKUUk4J_dzXhFSckHRXvEoxpvMCwHZw2IPc4ogJ2S_-DEH73RvW-BrcBWGQ3DovNFJt1NMEby2wa3tCtTBd1mehuSHRvfgw9SnRkcLUhP8eN3kaLOu-1jbsLG6GJNOzvcxKzqBC9c5A-Zt62PKljk1ya1_EY-LB7Vuo31yGw-KjyfHV0dvysXb07Oj-aI0lCNcGryChgsiNautNTWyGpmaaCQJFbXgUC-XkhvKkIFSasIhy68UWaxrYigkB8Wrre8wLju7MrZPQbdqCK7TYVJeO_Wn0rtGXfu1ohBVlFfZ4MWtQfBfRxuT6lw0tm3z9_kxKiQQpwxiJDL6_C_0xo-hz-MpJKHAnFWS_JMSiHEppMSZmm0pE3yMwda7lhFUmxNQmxNQuxPIBc_uDrrDf-88A3ILfHOtnf5jp-aXZ8d3zcttrcuL_L6r1eGLYpxwqj5fnqrzxftzIk-w-kR-AkDXzis</recordid><startdate>20160912</startdate><enddate>20160912</enddate><creator>Murciano-Calles, Javier</creator><creator>Romney, David K.</creator><creator>Brinkmann-Chen, Sabine</creator><creator>Buller, Andrew R.</creator><creator>Arnold, Frances H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160912</creationdate><title>A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation</title><author>Murciano-Calles, Javier ; Romney, David K. ; Brinkmann-Chen, Sabine ; Buller, Andrew R. ; Arnold, Frances H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5712-c2d0c7839a6feecf1ea1cf3a19358f870abb97c561c099a3706f8751e2af3c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation</topic><topic>Allosteric properties</topic><topic>Allosteric Regulation</topic><topic>allostery</topic><topic>Binding</topic><topic>Biocatalysis</topic><topic>Biocatalysts</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Displays</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Homology</topic><topic>Kinetics</topic><topic>Mimicry</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Engineering</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Spectroscopic analysis</topic><topic>Substrates</topic><topic>Transformations</topic><topic>Tryptophan</topic><topic>Tryptophan synthase</topic><topic>Tryptophan Synthase - chemistry</topic><topic>Tryptophan Synthase - genetics</topic><topic>Tryptophan Synthase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murciano-Calles, Javier</creatorcontrib><creatorcontrib>Romney, David K.</creatorcontrib><creatorcontrib>Brinkmann-Chen, Sabine</creatorcontrib><creatorcontrib>Buller, Andrew R.</creatorcontrib><creatorcontrib>Arnold, Frances H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murciano-Calles, Javier</au><au>Romney, David K.</au><au>Brinkmann-Chen, Sabine</au><au>Buller, Andrew R.</au><au>Arnold, Frances H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-09-12</date><risdate>2016</risdate><volume>55</volume><issue>38</issue><spage>11577</spage><epage>11581</epage><pages>11577-11581</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Naturally occurring enzyme homologues often display highly divergent activity with non‐natural substrates. Exploiting this diversity with enzymes engineered for new or altered function, however, is laborious because the engineering must be replicated for each homologue. A small set of mutations of the tryptophan synthase β‐subunit (TrpB) from Pyrococcus furiosus, which mimics the activation afforded by binding of the α‐subunit, was demonstrated to have a similar activating effect in different TrpB homologues with as little as 57 % sequence identity. Kinetic and spectroscopic analyses indicate that the mutations function through the same mechanism: mimicry of α‐subunit binding. From these enzymes, we identified a new TrpB catalyst that displays a remarkably broad activity profile in the synthesis of 5‐substituted tryptophans. This demonstrates that allosteric activation can be recapitulated throughout a protein family to explore natural sequence diversity for desirable biocatalytic transformations. Better off alone: The tryptophan synthase enzyme complex is active toward a number of indole analogues. The β‐subunit (TrpB) performs the synthetically useful reaction but requires the α‐subunit to be fully active. Mutations from a re‐activated TrpB variant from Pyrococcus furiosus were transferred into homologous TrpB enzymes to generate a panel of stand‐alone TrpB catalysts, one of which is useful for making 5‐substituted tryptophans, an important biological motif.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27510733</pmid><doi>10.1002/anie.201606242</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2016-09, Vol.55 (38), p.11577-11581
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5014574
source Wiley
subjects Activation
Allosteric properties
Allosteric Regulation
allostery
Binding
Biocatalysis
Biocatalysts
Catalysts
Chemical synthesis
Displays
Engineering
Enzymes
Homology
Kinetics
Mimicry
Mutagenesis, Site-Directed
Mutation
Protein Binding
Protein Engineering
Protein Subunits - chemistry
Protein Subunits - genetics
Protein Subunits - metabolism
Pyrococcus furiosus - enzymology
Spectroscopic analysis
Substrates
Transformations
Tryptophan
Tryptophan synthase
Tryptophan Synthase - chemistry
Tryptophan Synthase - genetics
Tryptophan Synthase - metabolism
title A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Panel%20of%20TrpB%20Biocatalysts%20Derived%20from%20Tryptophan%20Synthase%20through%20the%20Transfer%20of%20Mutations%20that%20Mimic%20Allosteric%20Activation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Murciano-Calles,%20Javier&rft.date=2016-09-12&rft.volume=55&rft.issue=38&rft.spage=11577&rft.epage=11581&rft.pages=11577-11581&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201606242&rft_dat=%3Cproquest_pubme%3E4171180641%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5712-c2d0c7839a6feecf1ea1cf3a19358f870abb97c561c099a3706f8751e2af3c503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816798992&rft_id=info:pmid/27510733&rfr_iscdi=true