Loading…

Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales

Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically h...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2016-09, Vol.111 (5), p.1026-1034
Main Authors: Kurniawan, Nicholas A., Vos, Bart E., Biebricher, Andreas, Wuite, Gijs J.L., Peterman, Erwin J.G., Koenderink, Gijsje H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293
cites cdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293
container_end_page 1034
container_issue 5
container_start_page 1026
container_title Biophysical journal
container_volume 111
creator Kurniawan, Nicholas A.
Vos, Bart E.
Biebricher, Andreas
Wuite, Gijs J.L.
Peterman, Erwin J.G.
Koenderink, Gijsje H.
description Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.
doi_str_mv 10.1016/j.bpj.2016.06.034
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5018126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516304817</els_id><sourcerecordid>4191614381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</originalsourceid><addsrcrecordid>eNp9kVGL1DAQx4Mo3nr6AXyRgC--dJ0kbdoiCMfhqbCn4OpzSNLpbWq36SXpyX17s-55qA_CQMLMb_7MzJ-Q5wzWDJh8PazNPKx5_q4hhygfkBWrSl4ANPIhWQGALETZVifkSYwDAOMVsMfkhNcSeC1gRfDCmeAm-gnTDx--R7pd5tmHRL-gXUKuXNFLtDs9OatHuvG6i9Tc0rNOz-lQTDt0gW5TWGxaAlJtg4-RXi5jcvOIdJvbMD4lj3o9Rnx2956Sbxfvvp5_KDaf3388P9sUtqzbVJi2tszUddkKI5nOOWCNAd6WgvUoS9tzWVfG5JSxZWdF3YNhlokauOS8Fafk7VF3XsweO4tTCnpUc3B7HW6V1079XZncTl35G5XP0jAus8CrO4HgrxeMSe1dtDiOekK_RJWpRgieR8zoy3_QwS9hyutlinPRVLLimWJH6tddAvb3wzBQBxPVoLKJ6mCighzioPzizy3uO367loE3RwDzLW8cBhWtw8li5wLapDrv_iP_Ey2jrXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822385652</pqid></control><display><type>article</type><title>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</title><source>PubMed (Medline)</source><creator>Kurniawan, Nicholas A. ; Vos, Bart E. ; Biebricher, Andreas ; Wuite, Gijs J.L. ; Peterman, Erwin J.G. ; Koenderink, Gijsje H.</creator><creatorcontrib>Kurniawan, Nicholas A. ; Vos, Bart E. ; Biebricher, Andreas ; Wuite, Gijs J.L. ; Peterman, Erwin J.G. ; Koenderink, Gijsje H.</creatorcontrib><description>Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.06.034</identifier><identifier>PMID: 27602730</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation ; Cell Biophysics ; Cells ; Elasticity ; Fibrin - chemistry ; Fibrin - metabolism ; Humans ; Mechanical properties ; Microscopy ; Microscopy, Fluorescence ; Optical Tweezers ; Rheology ; Stress, Mechanical ; Tissues</subject><ispartof>Biophysical journal, 2016-09, Vol.111 (5), p.1026-1034</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Sep 6, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</citedby><cites>FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018126/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018126/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27602730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurniawan, Nicholas A.</creatorcontrib><creatorcontrib>Vos, Bart E.</creatorcontrib><creatorcontrib>Biebricher, Andreas</creatorcontrib><creatorcontrib>Wuite, Gijs J.L.</creatorcontrib><creatorcontrib>Peterman, Erwin J.G.</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><title>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.</description><subject>Adaptation</subject><subject>Cell Biophysics</subject><subject>Cells</subject><subject>Elasticity</subject><subject>Fibrin - chemistry</subject><subject>Fibrin - metabolism</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Optical Tweezers</subject><subject>Rheology</subject><subject>Stress, Mechanical</subject><subject>Tissues</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kVGL1DAQx4Mo3nr6AXyRgC--dJ0kbdoiCMfhqbCn4OpzSNLpbWq36SXpyX17s-55qA_CQMLMb_7MzJ-Q5wzWDJh8PazNPKx5_q4hhygfkBWrSl4ANPIhWQGALETZVifkSYwDAOMVsMfkhNcSeC1gRfDCmeAm-gnTDx--R7pd5tmHRL-gXUKuXNFLtDs9OatHuvG6i9Tc0rNOz-lQTDt0gW5TWGxaAlJtg4-RXi5jcvOIdJvbMD4lj3o9Rnx2956Sbxfvvp5_KDaf3388P9sUtqzbVJi2tszUddkKI5nOOWCNAd6WgvUoS9tzWVfG5JSxZWdF3YNhlokauOS8Fafk7VF3XsweO4tTCnpUc3B7HW6V1079XZncTl35G5XP0jAus8CrO4HgrxeMSe1dtDiOekK_RJWpRgieR8zoy3_QwS9hyutlinPRVLLimWJH6tddAvb3wzBQBxPVoLKJ6mCighzioPzizy3uO367loE3RwDzLW8cBhWtw8li5wLapDrv_iP_Ey2jrXA</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Kurniawan, Nicholas A.</creator><creator>Vos, Bart E.</creator><creator>Biebricher, Andreas</creator><creator>Wuite, Gijs J.L.</creator><creator>Peterman, Erwin J.G.</creator><creator>Koenderink, Gijsje H.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160906</creationdate><title>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</title><author>Kurniawan, Nicholas A. ; Vos, Bart E. ; Biebricher, Andreas ; Wuite, Gijs J.L. ; Peterman, Erwin J.G. ; Koenderink, Gijsje H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Cell Biophysics</topic><topic>Cells</topic><topic>Elasticity</topic><topic>Fibrin - chemistry</topic><topic>Fibrin - metabolism</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Optical Tweezers</topic><topic>Rheology</topic><topic>Stress, Mechanical</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurniawan, Nicholas A.</creatorcontrib><creatorcontrib>Vos, Bart E.</creatorcontrib><creatorcontrib>Biebricher, Andreas</creatorcontrib><creatorcontrib>Wuite, Gijs J.L.</creatorcontrib><creatorcontrib>Peterman, Erwin J.G.</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurniawan, Nicholas A.</au><au>Vos, Bart E.</au><au>Biebricher, Andreas</au><au>Wuite, Gijs J.L.</au><au>Peterman, Erwin J.G.</au><au>Koenderink, Gijsje H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-09-06</date><risdate>2016</risdate><volume>111</volume><issue>5</issue><spage>1026</spage><epage>1034</epage><pages>1026-1034</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27602730</pmid><doi>10.1016/j.bpj.2016.06.034</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2016-09, Vol.111 (5), p.1026-1034
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5018126
source PubMed (Medline)
subjects Adaptation
Cell Biophysics
Cells
Elasticity
Fibrin - chemistry
Fibrin - metabolism
Humans
Mechanical properties
Microscopy
Microscopy, Fluorescence
Optical Tweezers
Rheology
Stress, Mechanical
Tissues
title Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrin%20Networks%20Support%20Recurring%20Mechanical%20Loads%20by%20Adapting%20their%20Structure%20across%20Multiple%20Scales&rft.jtitle=Biophysical%20journal&rft.au=Kurniawan,%20Nicholas%C2%A0A.&rft.date=2016-09-06&rft.volume=111&rft.issue=5&rft.spage=1026&rft.epage=1034&rft.pages=1026-1034&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.06.034&rft_dat=%3Cproquest_pubme%3E4191614381%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1822385652&rft_id=info:pmid/27602730&rfr_iscdi=true