Loading…
Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales
Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically h...
Saved in:
Published in: | Biophysical journal 2016-09, Vol.111 (5), p.1026-1034 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293 |
container_end_page | 1034 |
container_issue | 5 |
container_start_page | 1026 |
container_title | Biophysical journal |
container_volume | 111 |
creator | Kurniawan, Nicholas A. Vos, Bart E. Biebricher, Andreas Wuite, Gijs J.L. Peterman, Erwin J.G. Koenderink, Gijsje H. |
description | Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues. |
doi_str_mv | 10.1016/j.bpj.2016.06.034 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5018126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516304817</els_id><sourcerecordid>4191614381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</originalsourceid><addsrcrecordid>eNp9kVGL1DAQx4Mo3nr6AXyRgC--dJ0kbdoiCMfhqbCn4OpzSNLpbWq36SXpyX17s-55qA_CQMLMb_7MzJ-Q5wzWDJh8PazNPKx5_q4hhygfkBWrSl4ANPIhWQGALETZVifkSYwDAOMVsMfkhNcSeC1gRfDCmeAm-gnTDx--R7pd5tmHRL-gXUKuXNFLtDs9OatHuvG6i9Tc0rNOz-lQTDt0gW5TWGxaAlJtg4-RXi5jcvOIdJvbMD4lj3o9Rnx2956Sbxfvvp5_KDaf3388P9sUtqzbVJi2tszUddkKI5nOOWCNAd6WgvUoS9tzWVfG5JSxZWdF3YNhlokauOS8Fafk7VF3XsweO4tTCnpUc3B7HW6V1079XZncTl35G5XP0jAus8CrO4HgrxeMSe1dtDiOekK_RJWpRgieR8zoy3_QwS9hyutlinPRVLLimWJH6tddAvb3wzBQBxPVoLKJ6mCighzioPzizy3uO367loE3RwDzLW8cBhWtw8li5wLapDrv_iP_Ey2jrXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822385652</pqid></control><display><type>article</type><title>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</title><source>PubMed (Medline)</source><creator>Kurniawan, Nicholas A. ; Vos, Bart E. ; Biebricher, Andreas ; Wuite, Gijs J.L. ; Peterman, Erwin J.G. ; Koenderink, Gijsje H.</creator><creatorcontrib>Kurniawan, Nicholas A. ; Vos, Bart E. ; Biebricher, Andreas ; Wuite, Gijs J.L. ; Peterman, Erwin J.G. ; Koenderink, Gijsje H.</creatorcontrib><description>Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.06.034</identifier><identifier>PMID: 27602730</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation ; Cell Biophysics ; Cells ; Elasticity ; Fibrin - chemistry ; Fibrin - metabolism ; Humans ; Mechanical properties ; Microscopy ; Microscopy, Fluorescence ; Optical Tweezers ; Rheology ; Stress, Mechanical ; Tissues</subject><ispartof>Biophysical journal, 2016-09, Vol.111 (5), p.1026-1034</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Sep 6, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</citedby><cites>FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018126/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018126/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27602730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurniawan, Nicholas A.</creatorcontrib><creatorcontrib>Vos, Bart E.</creatorcontrib><creatorcontrib>Biebricher, Andreas</creatorcontrib><creatorcontrib>Wuite, Gijs J.L.</creatorcontrib><creatorcontrib>Peterman, Erwin J.G.</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><title>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.</description><subject>Adaptation</subject><subject>Cell Biophysics</subject><subject>Cells</subject><subject>Elasticity</subject><subject>Fibrin - chemistry</subject><subject>Fibrin - metabolism</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Optical Tweezers</subject><subject>Rheology</subject><subject>Stress, Mechanical</subject><subject>Tissues</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kVGL1DAQx4Mo3nr6AXyRgC--dJ0kbdoiCMfhqbCn4OpzSNLpbWq36SXpyX17s-55qA_CQMLMb_7MzJ-Q5wzWDJh8PazNPKx5_q4hhygfkBWrSl4ANPIhWQGALETZVifkSYwDAOMVsMfkhNcSeC1gRfDCmeAm-gnTDx--R7pd5tmHRL-gXUKuXNFLtDs9OatHuvG6i9Tc0rNOz-lQTDt0gW5TWGxaAlJtg4-RXi5jcvOIdJvbMD4lj3o9Rnx2956Sbxfvvp5_KDaf3388P9sUtqzbVJi2tszUddkKI5nOOWCNAd6WgvUoS9tzWVfG5JSxZWdF3YNhlokauOS8Fafk7VF3XsweO4tTCnpUc3B7HW6V1079XZncTl35G5XP0jAus8CrO4HgrxeMSe1dtDiOekK_RJWpRgieR8zoy3_QwS9hyutlinPRVLLimWJH6tddAvb3wzBQBxPVoLKJ6mCighzioPzizy3uO367loE3RwDzLW8cBhWtw8li5wLapDrv_iP_Ey2jrXA</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Kurniawan, Nicholas A.</creator><creator>Vos, Bart E.</creator><creator>Biebricher, Andreas</creator><creator>Wuite, Gijs J.L.</creator><creator>Peterman, Erwin J.G.</creator><creator>Koenderink, Gijsje H.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160906</creationdate><title>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</title><author>Kurniawan, Nicholas A. ; Vos, Bart E. ; Biebricher, Andreas ; Wuite, Gijs J.L. ; Peterman, Erwin J.G. ; Koenderink, Gijsje H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Cell Biophysics</topic><topic>Cells</topic><topic>Elasticity</topic><topic>Fibrin - chemistry</topic><topic>Fibrin - metabolism</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Optical Tweezers</topic><topic>Rheology</topic><topic>Stress, Mechanical</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurniawan, Nicholas A.</creatorcontrib><creatorcontrib>Vos, Bart E.</creatorcontrib><creatorcontrib>Biebricher, Andreas</creatorcontrib><creatorcontrib>Wuite, Gijs J.L.</creatorcontrib><creatorcontrib>Peterman, Erwin J.G.</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurniawan, Nicholas A.</au><au>Vos, Bart E.</au><au>Biebricher, Andreas</au><au>Wuite, Gijs J.L.</au><au>Peterman, Erwin J.G.</au><au>Koenderink, Gijsje H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-09-06</date><risdate>2016</risdate><volume>111</volume><issue>5</issue><spage>1026</spage><epage>1034</epage><pages>1026-1034</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27602730</pmid><doi>10.1016/j.bpj.2016.06.034</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2016-09, Vol.111 (5), p.1026-1034 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5018126 |
source | PubMed (Medline) |
subjects | Adaptation Cell Biophysics Cells Elasticity Fibrin - chemistry Fibrin - metabolism Humans Mechanical properties Microscopy Microscopy, Fluorescence Optical Tweezers Rheology Stress, Mechanical Tissues |
title | Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrin%20Networks%20Support%20Recurring%20Mechanical%20Loads%20by%20Adapting%20their%20Structure%20across%20Multiple%20Scales&rft.jtitle=Biophysical%20journal&rft.au=Kurniawan,%20Nicholas%C2%A0A.&rft.date=2016-09-06&rft.volume=111&rft.issue=5&rft.spage=1026&rft.epage=1034&rft.pages=1026-1034&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.06.034&rft_dat=%3Cproquest_pubme%3E4191614381%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-b97c1b77493b61a479018b029431fe64cf2675bbb02bc4dc37f0b1c1370262293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1822385652&rft_id=info:pmid/27602730&rfr_iscdi=true |