Loading…

3D simulations of wet foam coarsening evidence a self similar growth regime

[Display omitted] •We show Potts model may simulate coarsening of 3D wet foams.•We obtain the growth exponents for liquid fractions of 0.0, 0.05 and 0.20.•The overlapping of distribution functions indicates that the systems attain a scaling regime. In wet liquid foams, slow diffusion of gas through...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2015-05, Vol.473, p.109-114
Main Authors: Thomas, Gilberto L., Belmonte, Julio M., Graner, François, Glazier, James A., de Almeida, Rita M.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-24df3c7d07ce6d30e93a008d0798a3010e412f106088f5f54e5da291d0594f803
cites cdi_FETCH-LOGICAL-c541t-24df3c7d07ce6d30e93a008d0798a3010e412f106088f5f54e5da291d0594f803
container_end_page 114
container_issue
container_start_page 109
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 473
creator Thomas, Gilberto L.
Belmonte, Julio M.
Graner, François
Glazier, James A.
de Almeida, Rita M.C.
description [Display omitted] •We show Potts model may simulate coarsening of 3D wet foams.•We obtain the growth exponents for liquid fractions of 0.0, 0.05 and 0.20.•The overlapping of distribution functions indicates that the systems attain a scaling regime. In wet liquid foams, slow diffusion of gas through bubble walls changes bubble pressure, volume and wall curvature. Large bubbles grow at the expenses of smaller ones. The smaller the bubble, the faster it shrinks. As the number of bubbles in a given volume decreases in time, the average bubble size increases: i.e. the foam coarsens. During coarsening, bubbles also move relative to each other, changing bubble topology and shape, while liquid moves within the regions separating the bubbles. Analyzing the combined effects of these mechanisms requires examining a volume with enough bubbles to provide appropriate statistics throughout coarsening. Using a Cellular Potts model, we simulate these mechanisms during the evolution of three-dimensional foams with wetnesses of ϕ=0.00, 0.05 and 0.20. We represent the liquid phase as an ensemble of many small fluid particles, which allows us to monitor liquid flow in the region between bubbles. The simulations begin with 2×105 bubbles for ϕ=0.00 and 1.25×105 bubbles for ϕ=0.05 and 0.20, allowing us to track the distribution functions for bubble size, topology and growth rate over two and a half decades of volume change. All simulations eventually reach a self-similar growth regime, with the distribution functions time independent and the number of bubbles decreasing with time as a power law whose exponent depends on the wetness.
doi_str_mv 10.1016/j.colsurfa.2015.02.015
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5019577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775715001387</els_id><sourcerecordid>1835683981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-24df3c7d07ce6d30e93a008d0798a3010e412f106088f5f54e5da291d0594f803</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBAVXQp_ofKRS8JzbMf2BYFavtRKvcDZMvbz1qskLnayFf-erLat4NTT6OnNzHuaIeScQcuA9e93rc9DXUp0bQdMttC1K7wgG6YVbwSX5iXZgOlUo5RUp-R1rTsAEFKZV-S0Uz0HIcyGXPFLWtO4DG5Oeao0R3qPM43ZjdRnVypOadpS3KeAk0fqaMUhHiRpcIVuS76fb2nBbRrxDTmJbqj49gHPyM8vn39cfGuub75-v_h03Xgp2Nx0IkTuVQDlsQ8c0HAHoNfZaMeBAQrWRQY9aB1llAJlcJ1hAaQRUQM_Ix-OvnfLrxGDx2kubrB3JY2u_LHZJfv_Zkq3dpv3VgIzUqnV4N2DQcm_F6yzHVP1OAxuwrxUyzSXveZGs5XaH6m-5FoLxqczDOyhCbuzj03YQxMWOrvCKjz_98kn2WP0K-HjkYBrVPuExVafDhmHVNDPNuT03I2_S8yeTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835683981</pqid></control><display><type>article</type><title>3D simulations of wet foam coarsening evidence a self similar growth regime</title><source>ScienceDirect Freedom Collection</source><creator>Thomas, Gilberto L. ; Belmonte, Julio M. ; Graner, François ; Glazier, James A. ; de Almeida, Rita M.C.</creator><creatorcontrib>Thomas, Gilberto L. ; Belmonte, Julio M. ; Graner, François ; Glazier, James A. ; de Almeida, Rita M.C.</creatorcontrib><description>[Display omitted] •We show Potts model may simulate coarsening of 3D wet foams.•We obtain the growth exponents for liquid fractions of 0.0, 0.05 and 0.20.•The overlapping of distribution functions indicates that the systems attain a scaling regime. In wet liquid foams, slow diffusion of gas through bubble walls changes bubble pressure, volume and wall curvature. Large bubbles grow at the expenses of smaller ones. The smaller the bubble, the faster it shrinks. As the number of bubbles in a given volume decreases in time, the average bubble size increases: i.e. the foam coarsens. During coarsening, bubbles also move relative to each other, changing bubble topology and shape, while liquid moves within the regions separating the bubbles. Analyzing the combined effects of these mechanisms requires examining a volume with enough bubbles to provide appropriate statistics throughout coarsening. Using a Cellular Potts model, we simulate these mechanisms during the evolution of three-dimensional foams with wetnesses of ϕ=0.00, 0.05 and 0.20. We represent the liquid phase as an ensemble of many small fluid particles, which allows us to monitor liquid flow in the region between bubbles. The simulations begin with 2×105 bubbles for ϕ=0.00 and 1.25×105 bubbles for ϕ=0.05 and 0.20, allowing us to track the distribution functions for bubble size, topology and growth rate over two and a half decades of volume change. All simulations eventually reach a self-similar growth regime, with the distribution functions time independent and the number of bubbles decreasing with time as a power law whose exponent depends on the wetness.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2015.02.015</identifier><identifier>PMID: 27630449</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Foam coarsening ; Liquid foams ; Potts model simulations</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2015-05, Vol.473, p.109-114</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-24df3c7d07ce6d30e93a008d0798a3010e412f106088f5f54e5da291d0594f803</citedby><cites>FETCH-LOGICAL-c541t-24df3c7d07ce6d30e93a008d0798a3010e412f106088f5f54e5da291d0594f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27630449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Gilberto L.</creatorcontrib><creatorcontrib>Belmonte, Julio M.</creatorcontrib><creatorcontrib>Graner, François</creatorcontrib><creatorcontrib>Glazier, James A.</creatorcontrib><creatorcontrib>de Almeida, Rita M.C.</creatorcontrib><title>3D simulations of wet foam coarsening evidence a self similar growth regime</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><addtitle>Colloids Surf A Physicochem Eng Asp</addtitle><description>[Display omitted] •We show Potts model may simulate coarsening of 3D wet foams.•We obtain the growth exponents for liquid fractions of 0.0, 0.05 and 0.20.•The overlapping of distribution functions indicates that the systems attain a scaling regime. In wet liquid foams, slow diffusion of gas through bubble walls changes bubble pressure, volume and wall curvature. Large bubbles grow at the expenses of smaller ones. The smaller the bubble, the faster it shrinks. As the number of bubbles in a given volume decreases in time, the average bubble size increases: i.e. the foam coarsens. During coarsening, bubbles also move relative to each other, changing bubble topology and shape, while liquid moves within the regions separating the bubbles. Analyzing the combined effects of these mechanisms requires examining a volume with enough bubbles to provide appropriate statistics throughout coarsening. Using a Cellular Potts model, we simulate these mechanisms during the evolution of three-dimensional foams with wetnesses of ϕ=0.00, 0.05 and 0.20. We represent the liquid phase as an ensemble of many small fluid particles, which allows us to monitor liquid flow in the region between bubbles. The simulations begin with 2×105 bubbles for ϕ=0.00 and 1.25×105 bubbles for ϕ=0.05 and 0.20, allowing us to track the distribution functions for bubble size, topology and growth rate over two and a half decades of volume change. All simulations eventually reach a self-similar growth regime, with the distribution functions time independent and the number of bubbles decreasing with time as a power law whose exponent depends on the wetness.</description><subject>Foam coarsening</subject><subject>Liquid foams</subject><subject>Potts model simulations</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAUtBAVXQp_ofKRS8JzbMf2BYFavtRKvcDZMvbz1qskLnayFf-erLat4NTT6OnNzHuaIeScQcuA9e93rc9DXUp0bQdMttC1K7wgG6YVbwSX5iXZgOlUo5RUp-R1rTsAEFKZV-S0Uz0HIcyGXPFLWtO4DG5Oeao0R3qPM43ZjdRnVypOadpS3KeAk0fqaMUhHiRpcIVuS76fb2nBbRrxDTmJbqj49gHPyM8vn39cfGuub75-v_h03Xgp2Nx0IkTuVQDlsQ8c0HAHoNfZaMeBAQrWRQY9aB1llAJlcJ1hAaQRUQM_Ix-OvnfLrxGDx2kubrB3JY2u_LHZJfv_Zkq3dpv3VgIzUqnV4N2DQcm_F6yzHVP1OAxuwrxUyzSXveZGs5XaH6m-5FoLxqczDOyhCbuzj03YQxMWOrvCKjz_98kn2WP0K-HjkYBrVPuExVafDhmHVNDPNuT03I2_S8yeTw</recordid><startdate>20150520</startdate><enddate>20150520</enddate><creator>Thomas, Gilberto L.</creator><creator>Belmonte, Julio M.</creator><creator>Graner, François</creator><creator>Glazier, James A.</creator><creator>de Almeida, Rita M.C.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150520</creationdate><title>3D simulations of wet foam coarsening evidence a self similar growth regime</title><author>Thomas, Gilberto L. ; Belmonte, Julio M. ; Graner, François ; Glazier, James A. ; de Almeida, Rita M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-24df3c7d07ce6d30e93a008d0798a3010e412f106088f5f54e5da291d0594f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Foam coarsening</topic><topic>Liquid foams</topic><topic>Potts model simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Gilberto L.</creatorcontrib><creatorcontrib>Belmonte, Julio M.</creatorcontrib><creatorcontrib>Graner, François</creatorcontrib><creatorcontrib>Glazier, James A.</creatorcontrib><creatorcontrib>de Almeida, Rita M.C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Gilberto L.</au><au>Belmonte, Julio M.</au><au>Graner, François</au><au>Glazier, James A.</au><au>de Almeida, Rita M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D simulations of wet foam coarsening evidence a self similar growth regime</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><addtitle>Colloids Surf A Physicochem Eng Asp</addtitle><date>2015-05-20</date><risdate>2015</risdate><volume>473</volume><spage>109</spage><epage>114</epage><pages>109-114</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>[Display omitted] •We show Potts model may simulate coarsening of 3D wet foams.•We obtain the growth exponents for liquid fractions of 0.0, 0.05 and 0.20.•The overlapping of distribution functions indicates that the systems attain a scaling regime. In wet liquid foams, slow diffusion of gas through bubble walls changes bubble pressure, volume and wall curvature. Large bubbles grow at the expenses of smaller ones. The smaller the bubble, the faster it shrinks. As the number of bubbles in a given volume decreases in time, the average bubble size increases: i.e. the foam coarsens. During coarsening, bubbles also move relative to each other, changing bubble topology and shape, while liquid moves within the regions separating the bubbles. Analyzing the combined effects of these mechanisms requires examining a volume with enough bubbles to provide appropriate statistics throughout coarsening. Using a Cellular Potts model, we simulate these mechanisms during the evolution of three-dimensional foams with wetnesses of ϕ=0.00, 0.05 and 0.20. We represent the liquid phase as an ensemble of many small fluid particles, which allows us to monitor liquid flow in the region between bubbles. The simulations begin with 2×105 bubbles for ϕ=0.00 and 1.25×105 bubbles for ϕ=0.05 and 0.20, allowing us to track the distribution functions for bubble size, topology and growth rate over two and a half decades of volume change. All simulations eventually reach a self-similar growth regime, with the distribution functions time independent and the number of bubbles decreasing with time as a power law whose exponent depends on the wetness.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27630449</pmid><doi>10.1016/j.colsurfa.2015.02.015</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2015-05, Vol.473, p.109-114
issn 0927-7757
1873-4359
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5019577
source ScienceDirect Freedom Collection
subjects Foam coarsening
Liquid foams
Potts model simulations
title 3D simulations of wet foam coarsening evidence a self similar growth regime
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20simulations%20of%20wet%20foam%20coarsening%20evidence%20a%20self%20similar%20growth%20regime&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Thomas,%20Gilberto%20L.&rft.date=2015-05-20&rft.volume=473&rft.spage=109&rft.epage=114&rft.pages=109-114&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2015.02.015&rft_dat=%3Cproquest_pubme%3E1835683981%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-24df3c7d07ce6d30e93a008d0798a3010e412f106088f5f54e5da291d0594f803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835683981&rft_id=info:pmid/27630449&rfr_iscdi=true