Loading…
Optical thermometry based on level anticrossing in silicon carbide
We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Al...
Saved in:
Published in: | Scientific reports 2016-09, Vol.6 (1), p.33301-33301, Article 33301 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3 |
container_end_page | 33301 |
container_issue | 1 |
container_start_page | 33301 |
container_title | Scientific reports |
container_volume | 6 |
creator | Anisimov, A. N. Simin, D. Soltamov, V. A. Lebedev, S. P. Baranov, P. G. Astakhov, G. V. Dyakonov, V. |
description | We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz
1/2
for a detection volume of approximately 10
−6
mm
3
. In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center. |
doi_str_mv | 10.1038/srep33301 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819901931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFak7Srs2NoMMvGOxGr0Oanm4ZbTqTbrB_b3RzTM3NCbwP7_l4CTkDegOU57fe4YJzTuGAnDCapDHjjB3u_Xtk4P2chpcykYA4Jj2WDVmSgzghD5NFZ7Sqo26Grmkb7Nw6KpTHMmptVOMK60jZgLjWe2OnkbGRN7XRQdXKFabEU3JUqdrjYFv75P3p8W30Eo8nz6-j-3GsU5p0cQlCowYOaQlVDiUvq0RhMcwFpqiF1gp4ySuaFAw5FyoTwBjqpEopLTJd8T652_gulkWDpUbbOVXLhTONcmvZKiN_K9bM5LRdyZQyRiELBpdbA9d-LNF3sjFeY10ri-3SSwgXERQEh4Be_EHn7dLZsF6gApTxoeCButpQ39dxWO2GASq_wpG7cAJ7vj_9jvyJIgDXG8AHyU7R7bX85_YJBCSZlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899073693</pqid></control><display><type>article</type><title>Optical thermometry based on level anticrossing in silicon carbide</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Anisimov, A. N. ; Simin, D. ; Soltamov, V. A. ; Lebedev, S. P. ; Baranov, P. G. ; Astakhov, G. V. ; Dyakonov, V.</creator><creatorcontrib>Anisimov, A. N. ; Simin, D. ; Soltamov, V. A. ; Lebedev, S. P. ; Baranov, P. G. ; Astakhov, G. V. ; Dyakonov, V.</creatorcontrib><description>We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz
1/2
for a detection volume of approximately 10
−6
mm
3
. In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep33301</identifier><identifier>PMID: 27624819</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/119/995 ; 639/766/1130/2798 ; Humanities and Social Sciences ; Luminescence ; Magnetic fields ; multidisciplinary ; Optically detected magnetic resonance ; Photons ; Science ; Silicon ; Silicon carbide ; Splitting ; Temperature ; Temperature effects</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.33301-33301, Article 33301</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</citedby><cites>FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899073693/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899073693?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27624819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anisimov, A. N.</creatorcontrib><creatorcontrib>Simin, D.</creatorcontrib><creatorcontrib>Soltamov, V. A.</creatorcontrib><creatorcontrib>Lebedev, S. P.</creatorcontrib><creatorcontrib>Baranov, P. G.</creatorcontrib><creatorcontrib>Astakhov, G. V.</creatorcontrib><creatorcontrib>Dyakonov, V.</creatorcontrib><title>Optical thermometry based on level anticrossing in silicon carbide</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz
1/2
for a detection volume of approximately 10
−6
mm
3
. In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.</description><subject>140/125</subject><subject>639/301/119/995</subject><subject>639/766/1130/2798</subject><subject>Humanities and Social Sciences</subject><subject>Luminescence</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Optically detected magnetic resonance</subject><subject>Photons</subject><subject>Science</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Splitting</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFak7Srs2NoMMvGOxGr0Oanm4ZbTqTbrB_b3RzTM3NCbwP7_l4CTkDegOU57fe4YJzTuGAnDCapDHjjB3u_Xtk4P2chpcykYA4Jj2WDVmSgzghD5NFZ7Sqo26Grmkb7Nw6KpTHMmptVOMK60jZgLjWe2OnkbGRN7XRQdXKFabEU3JUqdrjYFv75P3p8W30Eo8nz6-j-3GsU5p0cQlCowYOaQlVDiUvq0RhMcwFpqiF1gp4ySuaFAw5FyoTwBjqpEopLTJd8T652_gulkWDpUbbOVXLhTONcmvZKiN_K9bM5LRdyZQyRiELBpdbA9d-LNF3sjFeY10ri-3SSwgXERQEh4Be_EHn7dLZsF6gApTxoeCButpQ39dxWO2GASq_wpG7cAJ7vj_9jvyJIgDXG8AHyU7R7bX85_YJBCSZlA</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Anisimov, A. N.</creator><creator>Simin, D.</creator><creator>Soltamov, V. A.</creator><creator>Lebedev, S. P.</creator><creator>Baranov, P. G.</creator><creator>Astakhov, G. V.</creator><creator>Dyakonov, V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160914</creationdate><title>Optical thermometry based on level anticrossing in silicon carbide</title><author>Anisimov, A. N. ; Simin, D. ; Soltamov, V. A. ; Lebedev, S. P. ; Baranov, P. G. ; Astakhov, G. V. ; Dyakonov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/125</topic><topic>639/301/119/995</topic><topic>639/766/1130/2798</topic><topic>Humanities and Social Sciences</topic><topic>Luminescence</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Optically detected magnetic resonance</topic><topic>Photons</topic><topic>Science</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Splitting</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anisimov, A. N.</creatorcontrib><creatorcontrib>Simin, D.</creatorcontrib><creatorcontrib>Soltamov, V. A.</creatorcontrib><creatorcontrib>Lebedev, S. P.</creatorcontrib><creatorcontrib>Baranov, P. G.</creatorcontrib><creatorcontrib>Astakhov, G. V.</creatorcontrib><creatorcontrib>Dyakonov, V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anisimov, A. N.</au><au>Simin, D.</au><au>Soltamov, V. A.</au><au>Lebedev, S. P.</au><au>Baranov, P. G.</au><au>Astakhov, G. V.</au><au>Dyakonov, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical thermometry based on level anticrossing in silicon carbide</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>33301</spage><epage>33301</epage><pages>33301-33301</pages><artnum>33301</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz
1/2
for a detection volume of approximately 10
−6
mm
3
. In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27624819</pmid><doi>10.1038/srep33301</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-09, Vol.6 (1), p.33301-33301, Article 33301 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022017 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/125 639/301/119/995 639/766/1130/2798 Humanities and Social Sciences Luminescence Magnetic fields multidisciplinary Optically detected magnetic resonance Photons Science Silicon Silicon carbide Splitting Temperature Temperature effects |
title | Optical thermometry based on level anticrossing in silicon carbide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20thermometry%20based%20on%20level%20anticrossing%20in%20silicon%20carbide&rft.jtitle=Scientific%20reports&rft.au=Anisimov,%20A.%20N.&rft.date=2016-09-14&rft.volume=6&rft.issue=1&rft.spage=33301&rft.epage=33301&rft.pages=33301-33301&rft.artnum=33301&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep33301&rft_dat=%3Cproquest_pubme%3E1819901931%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899073693&rft_id=info:pmid/27624819&rfr_iscdi=true |