Loading…

Optical thermometry based on level anticrossing in silicon carbide

We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Al...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-09, Vol.6 (1), p.33301-33301, Article 33301
Main Authors: Anisimov, A. N., Simin, D., Soltamov, V. A., Lebedev, S. P., Baranov, P. G., Astakhov, G. V., Dyakonov, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3
cites cdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3
container_end_page 33301
container_issue 1
container_start_page 33301
container_title Scientific reports
container_volume 6
creator Anisimov, A. N.
Simin, D.
Soltamov, V. A.
Lebedev, S. P.
Baranov, P. G.
Astakhov, G. V.
Dyakonov, V.
description We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz 1/2 for a detection volume of approximately 10 −6  mm 3 . In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.
doi_str_mv 10.1038/srep33301
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819901931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFak7Srs2NoMMvGOxGr0Oanm4ZbTqTbrB_b3RzTM3NCbwP7_l4CTkDegOU57fe4YJzTuGAnDCapDHjjB3u_Xtk4P2chpcykYA4Jj2WDVmSgzghD5NFZ7Sqo26Grmkb7Nw6KpTHMmptVOMK60jZgLjWe2OnkbGRN7XRQdXKFabEU3JUqdrjYFv75P3p8W30Eo8nz6-j-3GsU5p0cQlCowYOaQlVDiUvq0RhMcwFpqiF1gp4ySuaFAw5FyoTwBjqpEopLTJd8T652_gulkWDpUbbOVXLhTONcmvZKiN_K9bM5LRdyZQyRiELBpdbA9d-LNF3sjFeY10ri-3SSwgXERQEh4Be_EHn7dLZsF6gApTxoeCButpQ39dxWO2GASq_wpG7cAJ7vj_9jvyJIgDXG8AHyU7R7bX85_YJBCSZlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899073693</pqid></control><display><type>article</type><title>Optical thermometry based on level anticrossing in silicon carbide</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Anisimov, A. N. ; Simin, D. ; Soltamov, V. A. ; Lebedev, S. P. ; Baranov, P. G. ; Astakhov, G. V. ; Dyakonov, V.</creator><creatorcontrib>Anisimov, A. N. ; Simin, D. ; Soltamov, V. A. ; Lebedev, S. P. ; Baranov, P. G. ; Astakhov, G. V. ; Dyakonov, V.</creatorcontrib><description>We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz 1/2 for a detection volume of approximately 10 −6  mm 3 . In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep33301</identifier><identifier>PMID: 27624819</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/119/995 ; 639/766/1130/2798 ; Humanities and Social Sciences ; Luminescence ; Magnetic fields ; multidisciplinary ; Optically detected magnetic resonance ; Photons ; Science ; Silicon ; Silicon carbide ; Splitting ; Temperature ; Temperature effects</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.33301-33301, Article 33301</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</citedby><cites>FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899073693/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899073693?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27624819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anisimov, A. N.</creatorcontrib><creatorcontrib>Simin, D.</creatorcontrib><creatorcontrib>Soltamov, V. A.</creatorcontrib><creatorcontrib>Lebedev, S. P.</creatorcontrib><creatorcontrib>Baranov, P. G.</creatorcontrib><creatorcontrib>Astakhov, G. V.</creatorcontrib><creatorcontrib>Dyakonov, V.</creatorcontrib><title>Optical thermometry based on level anticrossing in silicon carbide</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz 1/2 for a detection volume of approximately 10 −6  mm 3 . In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.</description><subject>140/125</subject><subject>639/301/119/995</subject><subject>639/766/1130/2798</subject><subject>Humanities and Social Sciences</subject><subject>Luminescence</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Optically detected magnetic resonance</subject><subject>Photons</subject><subject>Science</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Splitting</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFak7Srs2NoMMvGOxGr0Oanm4ZbTqTbrB_b3RzTM3NCbwP7_l4CTkDegOU57fe4YJzTuGAnDCapDHjjB3u_Xtk4P2chpcykYA4Jj2WDVmSgzghD5NFZ7Sqo26Grmkb7Nw6KpTHMmptVOMK60jZgLjWe2OnkbGRN7XRQdXKFabEU3JUqdrjYFv75P3p8W30Eo8nz6-j-3GsU5p0cQlCowYOaQlVDiUvq0RhMcwFpqiF1gp4ySuaFAw5FyoTwBjqpEopLTJd8T652_gulkWDpUbbOVXLhTONcmvZKiN_K9bM5LRdyZQyRiELBpdbA9d-LNF3sjFeY10ri-3SSwgXERQEh4Be_EHn7dLZsF6gApTxoeCButpQ39dxWO2GASq_wpG7cAJ7vj_9jvyJIgDXG8AHyU7R7bX85_YJBCSZlA</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Anisimov, A. N.</creator><creator>Simin, D.</creator><creator>Soltamov, V. A.</creator><creator>Lebedev, S. P.</creator><creator>Baranov, P. G.</creator><creator>Astakhov, G. V.</creator><creator>Dyakonov, V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160914</creationdate><title>Optical thermometry based on level anticrossing in silicon carbide</title><author>Anisimov, A. N. ; Simin, D. ; Soltamov, V. A. ; Lebedev, S. P. ; Baranov, P. G. ; Astakhov, G. V. ; Dyakonov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/125</topic><topic>639/301/119/995</topic><topic>639/766/1130/2798</topic><topic>Humanities and Social Sciences</topic><topic>Luminescence</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Optically detected magnetic resonance</topic><topic>Photons</topic><topic>Science</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Splitting</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anisimov, A. N.</creatorcontrib><creatorcontrib>Simin, D.</creatorcontrib><creatorcontrib>Soltamov, V. A.</creatorcontrib><creatorcontrib>Lebedev, S. P.</creatorcontrib><creatorcontrib>Baranov, P. G.</creatorcontrib><creatorcontrib>Astakhov, G. V.</creatorcontrib><creatorcontrib>Dyakonov, V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anisimov, A. N.</au><au>Simin, D.</au><au>Soltamov, V. A.</au><au>Lebedev, S. P.</au><au>Baranov, P. G.</au><au>Astakhov, G. V.</au><au>Dyakonov, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical thermometry based on level anticrossing in silicon carbide</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>33301</spage><epage>33301</epage><pages>33301-33301</pages><artnum>33301</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We report a giant thermal shift of 2.1 MHz/K related to the excited-state zero-field splitting in the silicon vacancy centers in 4H silicon carbide. It is obtained from the indirect observation of the optically detected magnetic resonance in the excited state using the ground state as an ancilla. Alternatively, relative variations of the zero-field splitting for small temperature differences can be detected without application of radiofrequency fields, by simply monitoring the photoluminescence intensity in the vicinity of the level anticrossing. This effect results in an all-optical thermometry technique with temperature sensitivity of 100 mK/Hz 1/2 for a detection volume of approximately 10 −6  mm 3 . In contrast, the zero-field splitting in the ground state does not reveal detectable temperature shift. Using these properties, an integrated magnetic field and temperature sensor can be implemented on the same center.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27624819</pmid><doi>10.1038/srep33301</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.33301-33301, Article 33301
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022017
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/125
639/301/119/995
639/766/1130/2798
Humanities and Social Sciences
Luminescence
Magnetic fields
multidisciplinary
Optically detected magnetic resonance
Photons
Science
Silicon
Silicon carbide
Splitting
Temperature
Temperature effects
title Optical thermometry based on level anticrossing in silicon carbide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20thermometry%20based%20on%20level%20anticrossing%20in%20silicon%20carbide&rft.jtitle=Scientific%20reports&rft.au=Anisimov,%20A.%20N.&rft.date=2016-09-14&rft.volume=6&rft.issue=1&rft.spage=33301&rft.epage=33301&rft.pages=33301-33301&rft.artnum=33301&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep33301&rft_dat=%3Cproquest_pubme%3E1819901931%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-d19cec1315d1f81d3df4aeb689e5ec9cca13d3f04b2e339a79122ec4f500b7cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899073693&rft_id=info:pmid/27624819&rfr_iscdi=true