Loading…

An AT-barrier mechanically controls DNA reannealing under tension

Regulation of genomic activity occurs through the manipulation of DNA by competent mechanoenzymes. Force-clamp optical tweezers that allow the structural dynamics of the DNA molecule to be measured were used here to investigate the kinetics of mechanically-driven strand reannealing. When the force o...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2016-09, Vol.44 (16), p.7954-7962
Main Authors: Bongini, L, Pongor, C, Falorsi, G, Pertici, I, Kellermayer, M, Lombardi, V, Bianco, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-7f7fce728a83b98872dde56be68728478dc6b3fb71bd35b1a0525c1502e614f63
cites cdi_FETCH-LOGICAL-c378t-7f7fce728a83b98872dde56be68728478dc6b3fb71bd35b1a0525c1502e614f63
container_end_page 7962
container_issue 16
container_start_page 7954
container_title Nucleic acids research
container_volume 44
creator Bongini, L
Pongor, C
Falorsi, G
Pertici, I
Kellermayer, M
Lombardi, V
Bianco, P
description Regulation of genomic activity occurs through the manipulation of DNA by competent mechanoenzymes. Force-clamp optical tweezers that allow the structural dynamics of the DNA molecule to be measured were used here to investigate the kinetics of mechanically-driven strand reannealing. When the force on the torsionally unconstrained λ-phage DNA is decreased stepwise from above to below the overstretching transition, reannealing occurs via discrete shortening steps separated by exponentially distributed time intervals. Kinetic analysis reveals a transition barrier 0.58 nm along the reaction coordinate and an average reannealing-step size of ∼750 bp, consistent with the average bp interval separating segments of more than 10 consecutive AT bases. In an AT-rich DNA construct, in which the distance between segments of more than 10 consecutive AT is reduced to ∼210 bps, the reannealing step reduces accordingly without changes in the position of the transition barrier. Thus, the transition barrier for reannealing is determined by the presence of segments of more than 10 consecutive AT bps independent of changes in sequence composition, while the length of the reannealing strand changes according to the distance between poly-AT segments at least 10 bps long.
doi_str_mv 10.1093/nar/gkw604
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5027502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1822119255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-7f7fce728a83b98872dde56be68728478dc6b3fb71bd35b1a0525c1502e614f63</originalsourceid><addsrcrecordid>eNpVkN1LwzAUxYMobk5f_AOkjyLU5aNp0hehzE8Y-jKfQ5qmW7RNZtIq---NbA59uNwL98c5hwPAOYLXCBZkaqWfLt-_cpgdgDEiOU6zIseHYAwJpCmCGR-BkxDeIEQZotkxGGFGGGcMj0FZ2qRcpJX03mifdFqtpDVKtu0mUc723rUhuX0uE6-ltVq2xi6TwdaR7bUNxtlTcNTINuiz3Z6A1_u7xewxnb88PM3KeaqiV5-yhjVKM8wlJ1XBOcN1rWle6TyePGO8VnlFmoqhqia0QhJSTBWiEOscZU1OJuBmq7seqk7XSsdwshVrbzrpN8JJI_5_rFmJpfsUUYLFiQKXOwHvPgYdetGZoHTbSqvdEATiGCNUYEojerVFlXcheN3sbRAUP52L2LnYdh7hi7_B9uhvyeQbowN-dQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822119255</pqid></control><display><type>article</type><title>An AT-barrier mechanically controls DNA reannealing under tension</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central (PMC)</source><creator>Bongini, L ; Pongor, C ; Falorsi, G ; Pertici, I ; Kellermayer, M ; Lombardi, V ; Bianco, P</creator><creatorcontrib>Bongini, L ; Pongor, C ; Falorsi, G ; Pertici, I ; Kellermayer, M ; Lombardi, V ; Bianco, P</creatorcontrib><description>Regulation of genomic activity occurs through the manipulation of DNA by competent mechanoenzymes. Force-clamp optical tweezers that allow the structural dynamics of the DNA molecule to be measured were used here to investigate the kinetics of mechanically-driven strand reannealing. When the force on the torsionally unconstrained λ-phage DNA is decreased stepwise from above to below the overstretching transition, reannealing occurs via discrete shortening steps separated by exponentially distributed time intervals. Kinetic analysis reveals a transition barrier 0.58 nm along the reaction coordinate and an average reannealing-step size of ∼750 bp, consistent with the average bp interval separating segments of more than 10 consecutive AT bases. In an AT-rich DNA construct, in which the distance between segments of more than 10 consecutive AT is reduced to ∼210 bps, the reannealing step reduces accordingly without changes in the position of the transition barrier. Thus, the transition barrier for reannealing is determined by the presence of segments of more than 10 consecutive AT bps independent of changes in sequence composition, while the length of the reannealing strand changes according to the distance between poly-AT segments at least 10 bps long.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkw604</identifier><identifier>PMID: 27378772</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>AT Rich Sequence - genetics ; Bacteriophage lambda ; Base Sequence ; Biomechanical Phenomena ; DNA, Viral - metabolism ; Kinetics ; Nucleic Acid Denaturation ; Osmolar Concentration ; Structural Biology</subject><ispartof>Nucleic acids research, 2016-09, Vol.44 (16), p.7954-7962</ispartof><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-7f7fce728a83b98872dde56be68728478dc6b3fb71bd35b1a0525c1502e614f63</citedby><cites>FETCH-LOGICAL-c378t-7f7fce728a83b98872dde56be68728478dc6b3fb71bd35b1a0525c1502e614f63</cites><orcidid>0000-0002-5553-6553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027502/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027502/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27378772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bongini, L</creatorcontrib><creatorcontrib>Pongor, C</creatorcontrib><creatorcontrib>Falorsi, G</creatorcontrib><creatorcontrib>Pertici, I</creatorcontrib><creatorcontrib>Kellermayer, M</creatorcontrib><creatorcontrib>Lombardi, V</creatorcontrib><creatorcontrib>Bianco, P</creatorcontrib><title>An AT-barrier mechanically controls DNA reannealing under tension</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Regulation of genomic activity occurs through the manipulation of DNA by competent mechanoenzymes. Force-clamp optical tweezers that allow the structural dynamics of the DNA molecule to be measured were used here to investigate the kinetics of mechanically-driven strand reannealing. When the force on the torsionally unconstrained λ-phage DNA is decreased stepwise from above to below the overstretching transition, reannealing occurs via discrete shortening steps separated by exponentially distributed time intervals. Kinetic analysis reveals a transition barrier 0.58 nm along the reaction coordinate and an average reannealing-step size of ∼750 bp, consistent with the average bp interval separating segments of more than 10 consecutive AT bases. In an AT-rich DNA construct, in which the distance between segments of more than 10 consecutive AT is reduced to ∼210 bps, the reannealing step reduces accordingly without changes in the position of the transition barrier. Thus, the transition barrier for reannealing is determined by the presence of segments of more than 10 consecutive AT bps independent of changes in sequence composition, while the length of the reannealing strand changes according to the distance between poly-AT segments at least 10 bps long.</description><subject>AT Rich Sequence - genetics</subject><subject>Bacteriophage lambda</subject><subject>Base Sequence</subject><subject>Biomechanical Phenomena</subject><subject>DNA, Viral - metabolism</subject><subject>Kinetics</subject><subject>Nucleic Acid Denaturation</subject><subject>Osmolar Concentration</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkN1LwzAUxYMobk5f_AOkjyLU5aNp0hehzE8Y-jKfQ5qmW7RNZtIq---NbA59uNwL98c5hwPAOYLXCBZkaqWfLt-_cpgdgDEiOU6zIseHYAwJpCmCGR-BkxDeIEQZotkxGGFGGGcMj0FZ2qRcpJX03mifdFqtpDVKtu0mUc723rUhuX0uE6-ltVq2xi6TwdaR7bUNxtlTcNTINuiz3Z6A1_u7xewxnb88PM3KeaqiV5-yhjVKM8wlJ1XBOcN1rWle6TyePGO8VnlFmoqhqia0QhJSTBWiEOscZU1OJuBmq7seqk7XSsdwshVrbzrpN8JJI_5_rFmJpfsUUYLFiQKXOwHvPgYdetGZoHTbSqvdEATiGCNUYEojerVFlXcheN3sbRAUP52L2LnYdh7hi7_B9uhvyeQbowN-dQ</recordid><startdate>20160919</startdate><enddate>20160919</enddate><creator>Bongini, L</creator><creator>Pongor, C</creator><creator>Falorsi, G</creator><creator>Pertici, I</creator><creator>Kellermayer, M</creator><creator>Lombardi, V</creator><creator>Bianco, P</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5553-6553</orcidid></search><sort><creationdate>20160919</creationdate><title>An AT-barrier mechanically controls DNA reannealing under tension</title><author>Bongini, L ; Pongor, C ; Falorsi, G ; Pertici, I ; Kellermayer, M ; Lombardi, V ; Bianco, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-7f7fce728a83b98872dde56be68728478dc6b3fb71bd35b1a0525c1502e614f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AT Rich Sequence - genetics</topic><topic>Bacteriophage lambda</topic><topic>Base Sequence</topic><topic>Biomechanical Phenomena</topic><topic>DNA, Viral - metabolism</topic><topic>Kinetics</topic><topic>Nucleic Acid Denaturation</topic><topic>Osmolar Concentration</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bongini, L</creatorcontrib><creatorcontrib>Pongor, C</creatorcontrib><creatorcontrib>Falorsi, G</creatorcontrib><creatorcontrib>Pertici, I</creatorcontrib><creatorcontrib>Kellermayer, M</creatorcontrib><creatorcontrib>Lombardi, V</creatorcontrib><creatorcontrib>Bianco, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bongini, L</au><au>Pongor, C</au><au>Falorsi, G</au><au>Pertici, I</au><au>Kellermayer, M</au><au>Lombardi, V</au><au>Bianco, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An AT-barrier mechanically controls DNA reannealing under tension</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2016-09-19</date><risdate>2016</risdate><volume>44</volume><issue>16</issue><spage>7954</spage><epage>7962</epage><pages>7954-7962</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Regulation of genomic activity occurs through the manipulation of DNA by competent mechanoenzymes. Force-clamp optical tweezers that allow the structural dynamics of the DNA molecule to be measured were used here to investigate the kinetics of mechanically-driven strand reannealing. When the force on the torsionally unconstrained λ-phage DNA is decreased stepwise from above to below the overstretching transition, reannealing occurs via discrete shortening steps separated by exponentially distributed time intervals. Kinetic analysis reveals a transition barrier 0.58 nm along the reaction coordinate and an average reannealing-step size of ∼750 bp, consistent with the average bp interval separating segments of more than 10 consecutive AT bases. In an AT-rich DNA construct, in which the distance between segments of more than 10 consecutive AT is reduced to ∼210 bps, the reannealing step reduces accordingly without changes in the position of the transition barrier. Thus, the transition barrier for reannealing is determined by the presence of segments of more than 10 consecutive AT bps independent of changes in sequence composition, while the length of the reannealing strand changes according to the distance between poly-AT segments at least 10 bps long.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27378772</pmid><doi>10.1093/nar/gkw604</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5553-6553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2016-09, Vol.44 (16), p.7954-7962
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5027502
source Open Access: Oxford University Press Open Journals; PubMed Central (PMC)
subjects AT Rich Sequence - genetics
Bacteriophage lambda
Base Sequence
Biomechanical Phenomena
DNA, Viral - metabolism
Kinetics
Nucleic Acid Denaturation
Osmolar Concentration
Structural Biology
title An AT-barrier mechanically controls DNA reannealing under tension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20AT-barrier%20mechanically%20controls%20DNA%20reannealing%20under%20tension&rft.jtitle=Nucleic%20acids%20research&rft.au=Bongini,%20L&rft.date=2016-09-19&rft.volume=44&rft.issue=16&rft.spage=7954&rft.epage=7962&rft.pages=7954-7962&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkw604&rft_dat=%3Cproquest_pubme%3E1822119255%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-7f7fce728a83b98872dde56be68728478dc6b3fb71bd35b1a0525c1502e614f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1822119255&rft_id=info:pmid/27378772&rfr_iscdi=true