Loading…

Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding t...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-09, Vol.6 (1), p.34333-34333, Article 34333
Main Authors: Lau, Carus H. Y., King, Glenn F., Mobli, Mehdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63
cites cdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63
container_end_page 34333
container_issue 1
container_start_page 34333
container_title Scientific reports
container_volume 6
creator Lau, Carus H. Y.
King, Glenn F.
Mobli, Mehdi
description Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.
doi_str_mv 10.1038/srep34333
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5039624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899094126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</originalsourceid><addsrcrecordid>eNplkV1vFCEUhomxsU3bC_-AIfHGmozyMTDMjUnT-JXUeKPXBJgzszSzsAJT7YX_XdZdN6tycwjn4eGQF6GnlLyihKvXOcGGt5zzR-iMkVY0jDP2-Gh_ii5zviN1Cda3tH-CTlknu66j4gz9_BRncMtsErYm-4zjiMsKsA8FknHFx4AtlO8AAU-m-DDhdRz86CHhvPFDLSX-8CFjE4bfN-_jXMwEOEPIMW19-5Om3ocBb41uZUKAOV-gk9HMGS739Rx9fff2y82H5vbz-48317eNE6QtjXOEKGlHQhm0qh8l5ZYY6ewoRGeZkartmeRCDdQ6pdTYCtFLNvbU9FaA5Ofozc67WewaBgehJDPrTfJrkx50NF7_3Ql-pad4rwXhVdRWwYu9IMVvC-Si1z47mGcTIC5ZU8UFl1IQWtHn_6B3cUmhfq9SfU9qBGw70dWOcinmGuF4GIYSvc1VH3Kt7LPj6Q_knxQr8HIH5NoKE6SjJ_-z_QL3iK5Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899094126</pqid></control><display><type>article</type><title>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lau, Carus H. Y. ; King, Glenn F. ; Mobli, Mehdi</creator><creatorcontrib>Lau, Carus H. Y. ; King, Glenn F. ; Mobli, Mehdi</creatorcontrib><description>Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep34333</identifier><identifier>PMID: 27677715</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/6 ; 631/45/611 ; 631/45/612/1237 ; 631/535/878/1263 ; 82 ; 82/16 ; 82/80 ; 82/83 ; Channel gating ; Humanities and Social Sciences ; Ion channels ; Ions ; Membrane potential ; Mode of action ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Peptides ; Potassium channels (voltage-gated) ; Science ; Toxins ; Transmembrane domains ; Venom</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.34333-34333, Article 34333</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</citedby><cites>FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899094126/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899094126?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27677715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Carus H. Y.</creatorcontrib><creatorcontrib>King, Glenn F.</creatorcontrib><creatorcontrib>Mobli, Mehdi</creatorcontrib><title>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.</description><subject>101/6</subject><subject>631/45/611</subject><subject>631/45/612/1237</subject><subject>631/535/878/1263</subject><subject>82</subject><subject>82/16</subject><subject>82/80</subject><subject>82/83</subject><subject>Channel gating</subject><subject>Humanities and Social Sciences</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Membrane potential</subject><subject>Mode of action</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Potassium channels (voltage-gated)</subject><subject>Science</subject><subject>Toxins</subject><subject>Transmembrane domains</subject><subject>Venom</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1vFCEUhomxsU3bC_-AIfHGmozyMTDMjUnT-JXUeKPXBJgzszSzsAJT7YX_XdZdN6tycwjn4eGQF6GnlLyihKvXOcGGt5zzR-iMkVY0jDP2-Gh_ii5zviN1Cda3tH-CTlknu66j4gz9_BRncMtsErYm-4zjiMsKsA8FknHFx4AtlO8AAU-m-DDhdRz86CHhvPFDLSX-8CFjE4bfN-_jXMwEOEPIMW19-5Om3ocBb41uZUKAOV-gk9HMGS739Rx9fff2y82H5vbz-48317eNE6QtjXOEKGlHQhm0qh8l5ZYY6ewoRGeZkartmeRCDdQ6pdTYCtFLNvbU9FaA5Ofozc67WewaBgehJDPrTfJrkx50NF7_3Ql-pad4rwXhVdRWwYu9IMVvC-Si1z47mGcTIC5ZU8UFl1IQWtHn_6B3cUmhfq9SfU9qBGw70dWOcinmGuF4GIYSvc1VH3Kt7LPj6Q_knxQr8HIH5NoKE6SjJ_-z_QL3iK5Z</recordid><startdate>20160928</startdate><enddate>20160928</enddate><creator>Lau, Carus H. Y.</creator><creator>King, Glenn F.</creator><creator>Mobli, Mehdi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160928</creationdate><title>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</title><author>Lau, Carus H. Y. ; King, Glenn F. ; Mobli, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>101/6</topic><topic>631/45/611</topic><topic>631/45/612/1237</topic><topic>631/535/878/1263</topic><topic>82</topic><topic>82/16</topic><topic>82/80</topic><topic>82/83</topic><topic>Channel gating</topic><topic>Humanities and Social Sciences</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Membrane potential</topic><topic>Mode of action</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Potassium channels (voltage-gated)</topic><topic>Science</topic><topic>Toxins</topic><topic>Transmembrane domains</topic><topic>Venom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Carus H. Y.</creatorcontrib><creatorcontrib>King, Glenn F.</creatorcontrib><creatorcontrib>Mobli, Mehdi</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Carus H. Y.</au><au>King, Glenn F.</au><au>Mobli, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-28</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>34333</spage><epage>34333</epage><pages>34333-34333</pages><artnum>34333</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27677715</pmid><doi>10.1038/srep34333</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.34333-34333, Article 34333
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5039624
source PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/6
631/45/611
631/45/612/1237
631/535/878/1263
82
82/16
82/80
82/83
Channel gating
Humanities and Social Sciences
Ion channels
Ions
Membrane potential
Mode of action
multidisciplinary
NMR
Nuclear magnetic resonance
Peptides
Potassium channels (voltage-gated)
Science
Toxins
Transmembrane domains
Venom
title Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20of%20the%20interaction%20between%20gating%20modifier%20spider%20toxins%20and%20the%20voltage%20sensor%20of%20voltage-gated%20ion%20channels&rft.jtitle=Scientific%20reports&rft.au=Lau,%20Carus%20H.%20Y.&rft.date=2016-09-28&rft.volume=6&rft.issue=1&rft.spage=34333&rft.epage=34333&rft.pages=34333-34333&rft.artnum=34333&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep34333&rft_dat=%3Cproquest_pubme%3E1899094126%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899094126&rft_id=info:pmid/27677715&rfr_iscdi=true