Loading…
Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels
Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding t...
Saved in:
Published in: | Scientific reports 2016-09, Vol.6 (1), p.34333-34333, Article 34333 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63 |
container_end_page | 34333 |
container_issue | 1 |
container_start_page | 34333 |
container_title | Scientific reports |
container_volume | 6 |
creator | Lau, Carus H. Y. King, Glenn F. Mobli, Mehdi |
description | Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels. |
doi_str_mv | 10.1038/srep34333 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5039624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899094126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</originalsourceid><addsrcrecordid>eNplkV1vFCEUhomxsU3bC_-AIfHGmozyMTDMjUnT-JXUeKPXBJgzszSzsAJT7YX_XdZdN6tycwjn4eGQF6GnlLyihKvXOcGGt5zzR-iMkVY0jDP2-Gh_ii5zviN1Cda3tH-CTlknu66j4gz9_BRncMtsErYm-4zjiMsKsA8FknHFx4AtlO8AAU-m-DDhdRz86CHhvPFDLSX-8CFjE4bfN-_jXMwEOEPIMW19-5Om3ocBb41uZUKAOV-gk9HMGS739Rx9fff2y82H5vbz-48317eNE6QtjXOEKGlHQhm0qh8l5ZYY6ewoRGeZkartmeRCDdQ6pdTYCtFLNvbU9FaA5Ofozc67WewaBgehJDPrTfJrkx50NF7_3Ql-pad4rwXhVdRWwYu9IMVvC-Si1z47mGcTIC5ZU8UFl1IQWtHn_6B3cUmhfq9SfU9qBGw70dWOcinmGuF4GIYSvc1VH3Kt7LPj6Q_knxQr8HIH5NoKE6SjJ_-z_QL3iK5Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899094126</pqid></control><display><type>article</type><title>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lau, Carus H. Y. ; King, Glenn F. ; Mobli, Mehdi</creator><creatorcontrib>Lau, Carus H. Y. ; King, Glenn F. ; Mobli, Mehdi</creatorcontrib><description>Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep34333</identifier><identifier>PMID: 27677715</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/6 ; 631/45/611 ; 631/45/612/1237 ; 631/535/878/1263 ; 82 ; 82/16 ; 82/80 ; 82/83 ; Channel gating ; Humanities and Social Sciences ; Ion channels ; Ions ; Membrane potential ; Mode of action ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Peptides ; Potassium channels (voltage-gated) ; Science ; Toxins ; Transmembrane domains ; Venom</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.34333-34333, Article 34333</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</citedby><cites>FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899094126/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899094126?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27677715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Carus H. Y.</creatorcontrib><creatorcontrib>King, Glenn F.</creatorcontrib><creatorcontrib>Mobli, Mehdi</creatorcontrib><title>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.</description><subject>101/6</subject><subject>631/45/611</subject><subject>631/45/612/1237</subject><subject>631/535/878/1263</subject><subject>82</subject><subject>82/16</subject><subject>82/80</subject><subject>82/83</subject><subject>Channel gating</subject><subject>Humanities and Social Sciences</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Membrane potential</subject><subject>Mode of action</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Potassium channels (voltage-gated)</subject><subject>Science</subject><subject>Toxins</subject><subject>Transmembrane domains</subject><subject>Venom</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1vFCEUhomxsU3bC_-AIfHGmozyMTDMjUnT-JXUeKPXBJgzszSzsAJT7YX_XdZdN6tycwjn4eGQF6GnlLyihKvXOcGGt5zzR-iMkVY0jDP2-Gh_ii5zviN1Cda3tH-CTlknu66j4gz9_BRncMtsErYm-4zjiMsKsA8FknHFx4AtlO8AAU-m-DDhdRz86CHhvPFDLSX-8CFjE4bfN-_jXMwEOEPIMW19-5Om3ocBb41uZUKAOV-gk9HMGS739Rx9fff2y82H5vbz-48317eNE6QtjXOEKGlHQhm0qh8l5ZYY6ewoRGeZkartmeRCDdQ6pdTYCtFLNvbU9FaA5Ofozc67WewaBgehJDPrTfJrkx50NF7_3Ql-pad4rwXhVdRWwYu9IMVvC-Si1z47mGcTIC5ZU8UFl1IQWtHn_6B3cUmhfq9SfU9qBGw70dWOcinmGuF4GIYSvc1VH3Kt7LPj6Q_knxQr8HIH5NoKE6SjJ_-z_QL3iK5Z</recordid><startdate>20160928</startdate><enddate>20160928</enddate><creator>Lau, Carus H. Y.</creator><creator>King, Glenn F.</creator><creator>Mobli, Mehdi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160928</creationdate><title>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</title><author>Lau, Carus H. Y. ; King, Glenn F. ; Mobli, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>101/6</topic><topic>631/45/611</topic><topic>631/45/612/1237</topic><topic>631/535/878/1263</topic><topic>82</topic><topic>82/16</topic><topic>82/80</topic><topic>82/83</topic><topic>Channel gating</topic><topic>Humanities and Social Sciences</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Membrane potential</topic><topic>Mode of action</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Potassium channels (voltage-gated)</topic><topic>Science</topic><topic>Toxins</topic><topic>Transmembrane domains</topic><topic>Venom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Carus H. Y.</creatorcontrib><creatorcontrib>King, Glenn F.</creatorcontrib><creatorcontrib>Mobli, Mehdi</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Carus H. Y.</au><au>King, Glenn F.</au><au>Mobli, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-28</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>34333</spage><epage>34333</epage><pages>34333-34333</pages><artnum>34333</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27677715</pmid><doi>10.1038/srep34333</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-09, Vol.6 (1), p.34333-34333, Article 34333 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5039624 |
source | PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 101/6 631/45/611 631/45/612/1237 631/535/878/1263 82 82/16 82/80 82/83 Channel gating Humanities and Social Sciences Ion channels Ions Membrane potential Mode of action multidisciplinary NMR Nuclear magnetic resonance Peptides Potassium channels (voltage-gated) Science Toxins Transmembrane domains Venom |
title | Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20of%20the%20interaction%20between%20gating%20modifier%20spider%20toxins%20and%20the%20voltage%20sensor%20of%20voltage-gated%20ion%20channels&rft.jtitle=Scientific%20reports&rft.au=Lau,%20Carus%20H.%20Y.&rft.date=2016-09-28&rft.volume=6&rft.issue=1&rft.spage=34333&rft.epage=34333&rft.pages=34333-34333&rft.artnum=34333&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep34333&rft_dat=%3Cproquest_pubme%3E1899094126%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-cc0086bf012e489f613b0a6cbf557b2a684926358d1bc888f455962f91a9b5e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899094126&rft_id=info:pmid/27677715&rfr_iscdi=true |