Loading…

Robotic QM/MM-driven maturation of antibody combining sites

In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibod...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2016-10, Vol.2 (10), p.e1501695
Main Authors: Smirnov, Ivan V, Golovin, Andrey V, Chatziefthimiou, Spyros D, Stepanova, Anastasiya V, Peng, Yingjie, Zolotareva, Olga I, Belogurov, Jr, Alexey A, Kurkova, Inna N, Ponomarenko, Natalie A, Wilmanns, Matthias, Blackburn, G Michael, Gabibov, Alexander G, Lerner, Richard A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-afbb213f75d0e4d5bbcc8d221955266080f4dbf1341d0ea7c8a1dbecab402b4b3
cites cdi_FETCH-LOGICAL-c390t-afbb213f75d0e4d5bbcc8d221955266080f4dbf1341d0ea7c8a1dbecab402b4b3
container_end_page
container_issue 10
container_start_page e1501695
container_title Science advances
container_volume 2
creator Smirnov, Ivan V
Golovin, Andrey V
Chatziefthimiou, Spyros D
Stepanova, Anastasiya V
Peng, Yingjie
Zolotareva, Olga I
Belogurov, Jr, Alexey A
Kurkova, Inna N
Ponomarenko, Natalie A
Wilmanns, Matthias
Blackburn, G Michael
Gabibov, Alexander G
Lerner, Richard A
description In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.
doi_str_mv 10.1126/sciadv.1501695
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5072179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27774510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-afbb213f75d0e4d5bbcc8d221955266080f4dbf1341d0ea7c8a1dbecab402b4b3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobszdein9A91y0qRpEQQZfsGGKHod8tUZWZuRZIX9eyebY16dA-d9nwMPQteAJwCknEbtpOknwDCUNTtDQ1JwlhNGq_OTfYDGMX5jjIGWJYP6Eg0I55wywEN0--6VT05nb4vpYpGb4HrbZa1MmyCT813mm0x2ySlvtpn2rXKd65ZZdMnGK3TRyFW048Mcoc_Hh4_Zcz5_fXqZ3c9zXdQ45bJRikDRcGawpYYppXVlCIGaMVKWuMINNaqBgsIuILmuJBhltVQUE0VVMUJ3e-56o1prtO1SkCuxDq6VYSu8dOL_pXNfYul7wTAnwOsdYLIH6OBjDLY5dgGLX5Nib1IcTO4KN6cfj_E_b8UPHS5x5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robotic QM/MM-driven maturation of antibody combining sites</title><source>American Association for the Advancement of Science</source><source>PMC (PubMed Central)</source><creator>Smirnov, Ivan V ; Golovin, Andrey V ; Chatziefthimiou, Spyros D ; Stepanova, Anastasiya V ; Peng, Yingjie ; Zolotareva, Olga I ; Belogurov, Jr, Alexey A ; Kurkova, Inna N ; Ponomarenko, Natalie A ; Wilmanns, Matthias ; Blackburn, G Michael ; Gabibov, Alexander G ; Lerner, Richard A</creator><creatorcontrib>Smirnov, Ivan V ; Golovin, Andrey V ; Chatziefthimiou, Spyros D ; Stepanova, Anastasiya V ; Peng, Yingjie ; Zolotareva, Olga I ; Belogurov, Jr, Alexey A ; Kurkova, Inna N ; Ponomarenko, Natalie A ; Wilmanns, Matthias ; Blackburn, G Michael ; Gabibov, Alexander G ; Lerner, Richard A</creatorcontrib><description>In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1501695</identifier><identifier>PMID: 27774510</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Immunology ; SciAdv r-articles</subject><ispartof>Science advances, 2016-10, Vol.2 (10), p.e1501695</ispartof><rights>Copyright © 2016, The Authors 2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-afbb213f75d0e4d5bbcc8d221955266080f4dbf1341d0ea7c8a1dbecab402b4b3</citedby><cites>FETCH-LOGICAL-c390t-afbb213f75d0e4d5bbcc8d221955266080f4dbf1341d0ea7c8a1dbecab402b4b3</cites><orcidid>0000-0002-8908-4268 ; 0000-0001-7569-5474 ; 0000-0002-3941-0459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072179/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072179/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27774510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smirnov, Ivan V</creatorcontrib><creatorcontrib>Golovin, Andrey V</creatorcontrib><creatorcontrib>Chatziefthimiou, Spyros D</creatorcontrib><creatorcontrib>Stepanova, Anastasiya V</creatorcontrib><creatorcontrib>Peng, Yingjie</creatorcontrib><creatorcontrib>Zolotareva, Olga I</creatorcontrib><creatorcontrib>Belogurov, Jr, Alexey A</creatorcontrib><creatorcontrib>Kurkova, Inna N</creatorcontrib><creatorcontrib>Ponomarenko, Natalie A</creatorcontrib><creatorcontrib>Wilmanns, Matthias</creatorcontrib><creatorcontrib>Blackburn, G Michael</creatorcontrib><creatorcontrib>Gabibov, Alexander G</creatorcontrib><creatorcontrib>Lerner, Richard A</creatorcontrib><title>Robotic QM/MM-driven maturation of antibody combining sites</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.</description><subject>Immunology</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhoMobszdein9A91y0qRpEQQZfsGGKHod8tUZWZuRZIX9eyebY16dA-d9nwMPQteAJwCknEbtpOknwDCUNTtDQ1JwlhNGq_OTfYDGMX5jjIGWJYP6Eg0I55wywEN0--6VT05nb4vpYpGb4HrbZa1MmyCT813mm0x2ySlvtpn2rXKd65ZZdMnGK3TRyFW048Mcoc_Hh4_Zcz5_fXqZ3c9zXdQ45bJRikDRcGawpYYppXVlCIGaMVKWuMINNaqBgsIuILmuJBhltVQUE0VVMUJ3e-56o1prtO1SkCuxDq6VYSu8dOL_pXNfYul7wTAnwOsdYLIH6OBjDLY5dgGLX5Nib1IcTO4KN6cfj_E_b8UPHS5x5A</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Smirnov, Ivan V</creator><creator>Golovin, Andrey V</creator><creator>Chatziefthimiou, Spyros D</creator><creator>Stepanova, Anastasiya V</creator><creator>Peng, Yingjie</creator><creator>Zolotareva, Olga I</creator><creator>Belogurov, Jr, Alexey A</creator><creator>Kurkova, Inna N</creator><creator>Ponomarenko, Natalie A</creator><creator>Wilmanns, Matthias</creator><creator>Blackburn, G Michael</creator><creator>Gabibov, Alexander G</creator><creator>Lerner, Richard A</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8908-4268</orcidid><orcidid>https://orcid.org/0000-0001-7569-5474</orcidid><orcidid>https://orcid.org/0000-0002-3941-0459</orcidid></search><sort><creationdate>20161001</creationdate><title>Robotic QM/MM-driven maturation of antibody combining sites</title><author>Smirnov, Ivan V ; Golovin, Andrey V ; Chatziefthimiou, Spyros D ; Stepanova, Anastasiya V ; Peng, Yingjie ; Zolotareva, Olga I ; Belogurov, Jr, Alexey A ; Kurkova, Inna N ; Ponomarenko, Natalie A ; Wilmanns, Matthias ; Blackburn, G Michael ; Gabibov, Alexander G ; Lerner, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-afbb213f75d0e4d5bbcc8d221955266080f4dbf1341d0ea7c8a1dbecab402b4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Immunology</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Ivan V</creatorcontrib><creatorcontrib>Golovin, Andrey V</creatorcontrib><creatorcontrib>Chatziefthimiou, Spyros D</creatorcontrib><creatorcontrib>Stepanova, Anastasiya V</creatorcontrib><creatorcontrib>Peng, Yingjie</creatorcontrib><creatorcontrib>Zolotareva, Olga I</creatorcontrib><creatorcontrib>Belogurov, Jr, Alexey A</creatorcontrib><creatorcontrib>Kurkova, Inna N</creatorcontrib><creatorcontrib>Ponomarenko, Natalie A</creatorcontrib><creatorcontrib>Wilmanns, Matthias</creatorcontrib><creatorcontrib>Blackburn, G Michael</creatorcontrib><creatorcontrib>Gabibov, Alexander G</creatorcontrib><creatorcontrib>Lerner, Richard A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Ivan V</au><au>Golovin, Andrey V</au><au>Chatziefthimiou, Spyros D</au><au>Stepanova, Anastasiya V</au><au>Peng, Yingjie</au><au>Zolotareva, Olga I</au><au>Belogurov, Jr, Alexey A</au><au>Kurkova, Inna N</au><au>Ponomarenko, Natalie A</au><au>Wilmanns, Matthias</au><au>Blackburn, G Michael</au><au>Gabibov, Alexander G</au><au>Lerner, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robotic QM/MM-driven maturation of antibody combining sites</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>2</volume><issue>10</issue><spage>e1501695</spage><pages>e1501695-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27774510</pmid><doi>10.1126/sciadv.1501695</doi><orcidid>https://orcid.org/0000-0002-8908-4268</orcidid><orcidid>https://orcid.org/0000-0001-7569-5474</orcidid><orcidid>https://orcid.org/0000-0002-3941-0459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2016-10, Vol.2 (10), p.e1501695
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5072179
source American Association for the Advancement of Science; PMC (PubMed Central)
subjects Immunology
SciAdv r-articles
title Robotic QM/MM-driven maturation of antibody combining sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robotic%20QM/MM-driven%20maturation%20of%20antibody%20combining%20sites&rft.jtitle=Science%20advances&rft.au=Smirnov,%20Ivan%20V&rft.date=2016-10-01&rft.volume=2&rft.issue=10&rft.spage=e1501695&rft.pages=e1501695-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1501695&rft_dat=%3Cpubmed_cross%3E27774510%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-afbb213f75d0e4d5bbcc8d221955266080f4dbf1341d0ea7c8a1dbecab402b4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/27774510&rfr_iscdi=true