Loading…

Arbitrary-Region Raster Image Correlation Spectroscopy

Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanni...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2016-10, Vol.111 (8), p.1785-1796
Main Authors: Hendrix, Jelle, Dekens, Tomas, Schrimpf, Waldemar, Lamb, Don C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303
cites cdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303
container_end_page 1796
container_issue 8
container_start_page 1785
container_title Biophysical journal
container_volume 111
creator Hendrix, Jelle
Dekens, Tomas
Schrimpf, Waldemar
Lamb, Don C.
description Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.
doi_str_mv 10.1016/j.bpj.2016.09.012
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5073057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516308104</els_id><sourcerecordid>1834995719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</originalsourceid><addsrcrecordid>eNp9kV9r2zAUxUVZabJuH6AvI7CXvdi9sv44YjAoYWsDgUK7PQtZvs5kHMuTnEK_fWXShq4PfZLg_u7h3HMIuaCQU6Dyss2roc2L9M1B5UCLEzKnghcZwFJ-IHMAkBnjSszIxxhbSIQAekZmRVlKYJLPibwKlRuDCY_ZHW6d7xd3Jo4YFuud2eJi5UPAzozT4H5AOwYfrR8eP5HTxnQRPz-_5-TPr5-_VzfZ5vZ6vbraZJaXaswERQpcQQ2yqOraykbxSgpp61Isy0ahMlgZZIrToihkUyMTyDiqijXcMGDn5MdBd9hXO6wt9slrp4fgdsmy9sbp_ye9-6u3_kELKBmIMgl8exYI_t8e46h3LlrsOtOj30dNlykfJUqqEvr1Ddr6fejTeRPFKBWMTRQ9UDZFEQM2RzMU9NSKbnVqRU-taFA6ZZ52vry-4rjxUkMCvh8ATFk-OAw6Woe9xdqFFLquvXtH_gmLwp0p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833115339</pqid></control><display><type>article</type><title>Arbitrary-Region Raster Image Correlation Spectroscopy</title><source>PubMed Central</source><creator>Hendrix, Jelle ; Dekens, Tomas ; Schrimpf, Waldemar ; Lamb, Don C.</creator><creatorcontrib>Hendrix, Jelle ; Dekens, Tomas ; Schrimpf, Waldemar ; Lamb, Don C.</creatorcontrib><description>Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.09.012</identifier><identifier>PMID: 27760364</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Biophysics ; Cell Biophysics ; Cell Membrane - metabolism ; Cells ; Diffusion ; Fluorescence ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Membranes ; Microscopy ; Microscopy, Confocal ; Spectrum Analysis</subject><ispartof>Biophysical journal, 2016-10, Vol.111 (8), p.1785-1796</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Oct 18, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</citedby><cites>FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073057/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073057/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27760364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Dekens, Tomas</creatorcontrib><creatorcontrib>Schrimpf, Waldemar</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><title>Arbitrary-Region Raster Image Correlation Spectroscopy</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.</description><subject>Algorithms</subject><subject>Biophysics</subject><subject>Cell Biophysics</subject><subject>Cell Membrane - metabolism</subject><subject>Cells</subject><subject>Diffusion</subject><subject>Fluorescence</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Spectrum Analysis</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kV9r2zAUxUVZabJuH6AvI7CXvdi9sv44YjAoYWsDgUK7PQtZvs5kHMuTnEK_fWXShq4PfZLg_u7h3HMIuaCQU6Dyss2roc2L9M1B5UCLEzKnghcZwFJ-IHMAkBnjSszIxxhbSIQAekZmRVlKYJLPibwKlRuDCY_ZHW6d7xd3Jo4YFuud2eJi5UPAzozT4H5AOwYfrR8eP5HTxnQRPz-_5-TPr5-_VzfZ5vZ6vbraZJaXaswERQpcQQ2yqOraykbxSgpp61Isy0ahMlgZZIrToihkUyMTyDiqijXcMGDn5MdBd9hXO6wt9slrp4fgdsmy9sbp_ye9-6u3_kELKBmIMgl8exYI_t8e46h3LlrsOtOj30dNlykfJUqqEvr1Ddr6fejTeRPFKBWMTRQ9UDZFEQM2RzMU9NSKbnVqRU-taFA6ZZ52vry-4rjxUkMCvh8ATFk-OAw6Woe9xdqFFLquvXtH_gmLwp0p</recordid><startdate>20161018</startdate><enddate>20161018</enddate><creator>Hendrix, Jelle</creator><creator>Dekens, Tomas</creator><creator>Schrimpf, Waldemar</creator><creator>Lamb, Don C.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161018</creationdate><title>Arbitrary-Region Raster Image Correlation Spectroscopy</title><author>Hendrix, Jelle ; Dekens, Tomas ; Schrimpf, Waldemar ; Lamb, Don C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biophysics</topic><topic>Cell Biophysics</topic><topic>Cell Membrane - metabolism</topic><topic>Cells</topic><topic>Diffusion</topic><topic>Fluorescence</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Spectrum Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Dekens, Tomas</creatorcontrib><creatorcontrib>Schrimpf, Waldemar</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendrix, Jelle</au><au>Dekens, Tomas</au><au>Schrimpf, Waldemar</au><au>Lamb, Don C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrary-Region Raster Image Correlation Spectroscopy</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-10-18</date><risdate>2016</risdate><volume>111</volume><issue>8</issue><spage>1785</spage><epage>1796</epage><pages>1785-1796</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27760364</pmid><doi>10.1016/j.bpj.2016.09.012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2016-10, Vol.111 (8), p.1785-1796
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5073057
source PubMed Central
subjects Algorithms
Biophysics
Cell Biophysics
Cell Membrane - metabolism
Cells
Diffusion
Fluorescence
HeLa Cells
Humans
Image Processing, Computer-Assisted
Membranes
Microscopy
Microscopy, Confocal
Spectrum Analysis
title Arbitrary-Region Raster Image Correlation Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrary-Region%20Raster%20Image%20Correlation%20Spectroscopy&rft.jtitle=Biophysical%20journal&rft.au=Hendrix,%20Jelle&rft.date=2016-10-18&rft.volume=111&rft.issue=8&rft.spage=1785&rft.epage=1796&rft.pages=1785-1796&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.09.012&rft_dat=%3Cproquest_pubme%3E1834995719%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1833115339&rft_id=info:pmid/27760364&rfr_iscdi=true