Loading…
Arbitrary-Region Raster Image Correlation Spectroscopy
Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanni...
Saved in:
Published in: | Biophysical journal 2016-10, Vol.111 (8), p.1785-1796 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303 |
container_end_page | 1796 |
container_issue | 8 |
container_start_page | 1785 |
container_title | Biophysical journal |
container_volume | 111 |
creator | Hendrix, Jelle Dekens, Tomas Schrimpf, Waldemar Lamb, Don C. |
description | Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images. |
doi_str_mv | 10.1016/j.bpj.2016.09.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5073057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349516308104</els_id><sourcerecordid>1834995719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</originalsourceid><addsrcrecordid>eNp9kV9r2zAUxUVZabJuH6AvI7CXvdi9sv44YjAoYWsDgUK7PQtZvs5kHMuTnEK_fWXShq4PfZLg_u7h3HMIuaCQU6Dyss2roc2L9M1B5UCLEzKnghcZwFJ-IHMAkBnjSszIxxhbSIQAekZmRVlKYJLPibwKlRuDCY_ZHW6d7xd3Jo4YFuud2eJi5UPAzozT4H5AOwYfrR8eP5HTxnQRPz-_5-TPr5-_VzfZ5vZ6vbraZJaXaswERQpcQQ2yqOraykbxSgpp61Isy0ahMlgZZIrToihkUyMTyDiqijXcMGDn5MdBd9hXO6wt9slrp4fgdsmy9sbp_ye9-6u3_kELKBmIMgl8exYI_t8e46h3LlrsOtOj30dNlykfJUqqEvr1Ddr6fejTeRPFKBWMTRQ9UDZFEQM2RzMU9NSKbnVqRU-taFA6ZZ52vry-4rjxUkMCvh8ATFk-OAw6Woe9xdqFFLquvXtH_gmLwp0p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833115339</pqid></control><display><type>article</type><title>Arbitrary-Region Raster Image Correlation Spectroscopy</title><source>PubMed Central</source><creator>Hendrix, Jelle ; Dekens, Tomas ; Schrimpf, Waldemar ; Lamb, Don C.</creator><creatorcontrib>Hendrix, Jelle ; Dekens, Tomas ; Schrimpf, Waldemar ; Lamb, Don C.</creatorcontrib><description>Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2016.09.012</identifier><identifier>PMID: 27760364</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Biophysics ; Cell Biophysics ; Cell Membrane - metabolism ; Cells ; Diffusion ; Fluorescence ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Membranes ; Microscopy ; Microscopy, Confocal ; Spectrum Analysis</subject><ispartof>Biophysical journal, 2016-10, Vol.111 (8), p.1785-1796</ispartof><rights>2016 Biophysical Society</rights><rights>Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Oct 18, 2016</rights><rights>2016 Biophysical Society. 2016 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</citedby><cites>FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073057/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073057/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27760364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Dekens, Tomas</creatorcontrib><creatorcontrib>Schrimpf, Waldemar</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><title>Arbitrary-Region Raster Image Correlation Spectroscopy</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.</description><subject>Algorithms</subject><subject>Biophysics</subject><subject>Cell Biophysics</subject><subject>Cell Membrane - metabolism</subject><subject>Cells</subject><subject>Diffusion</subject><subject>Fluorescence</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Spectrum Analysis</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kV9r2zAUxUVZabJuH6AvI7CXvdi9sv44YjAoYWsDgUK7PQtZvs5kHMuTnEK_fWXShq4PfZLg_u7h3HMIuaCQU6Dyss2roc2L9M1B5UCLEzKnghcZwFJ-IHMAkBnjSszIxxhbSIQAekZmRVlKYJLPibwKlRuDCY_ZHW6d7xd3Jo4YFuud2eJi5UPAzozT4H5AOwYfrR8eP5HTxnQRPz-_5-TPr5-_VzfZ5vZ6vbraZJaXaswERQpcQQ2yqOraykbxSgpp61Isy0ahMlgZZIrToihkUyMTyDiqijXcMGDn5MdBd9hXO6wt9slrp4fgdsmy9sbp_ye9-6u3_kELKBmIMgl8exYI_t8e46h3LlrsOtOj30dNlykfJUqqEvr1Ddr6fejTeRPFKBWMTRQ9UDZFEQM2RzMU9NSKbnVqRU-taFA6ZZ52vry-4rjxUkMCvh8ATFk-OAw6Woe9xdqFFLquvXtH_gmLwp0p</recordid><startdate>20161018</startdate><enddate>20161018</enddate><creator>Hendrix, Jelle</creator><creator>Dekens, Tomas</creator><creator>Schrimpf, Waldemar</creator><creator>Lamb, Don C.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161018</creationdate><title>Arbitrary-Region Raster Image Correlation Spectroscopy</title><author>Hendrix, Jelle ; Dekens, Tomas ; Schrimpf, Waldemar ; Lamb, Don C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biophysics</topic><topic>Cell Biophysics</topic><topic>Cell Membrane - metabolism</topic><topic>Cells</topic><topic>Diffusion</topic><topic>Fluorescence</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Spectrum Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendrix, Jelle</creatorcontrib><creatorcontrib>Dekens, Tomas</creatorcontrib><creatorcontrib>Schrimpf, Waldemar</creatorcontrib><creatorcontrib>Lamb, Don C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendrix, Jelle</au><au>Dekens, Tomas</au><au>Schrimpf, Waldemar</au><au>Lamb, Don C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrary-Region Raster Image Correlation Spectroscopy</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2016-10-18</date><risdate>2016</risdate><volume>111</volume><issue>8</issue><spage>1785</spage><epage>1796</epage><pages>1785-1796</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27760364</pmid><doi>10.1016/j.bpj.2016.09.012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2016-10, Vol.111 (8), p.1785-1796 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5073057 |
source | PubMed Central |
subjects | Algorithms Biophysics Cell Biophysics Cell Membrane - metabolism Cells Diffusion Fluorescence HeLa Cells Humans Image Processing, Computer-Assisted Membranes Microscopy Microscopy, Confocal Spectrum Analysis |
title | Arbitrary-Region Raster Image Correlation Spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrary-Region%20Raster%20Image%20Correlation%20Spectroscopy&rft.jtitle=Biophysical%20journal&rft.au=Hendrix,%20Jelle&rft.date=2016-10-18&rft.volume=111&rft.issue=8&rft.spage=1785&rft.epage=1796&rft.pages=1785-1796&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2016.09.012&rft_dat=%3Cproquest_pubme%3E1834995719%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-51e10490d062bddc6f94b656cd7587f9e9aebae39412226fde35e34e9b3f4a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1833115339&rft_id=info:pmid/27760364&rfr_iscdi=true |