Loading…

Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling

Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that inner...

Full description

Saved in:
Bibliographic Details
Published in:Neural development 2016-10, Vol.11 (1), p.18-18, Article 18
Main Authors: Bjorke, Brielle, Shoja-Taheri, Farnaz, Kim, Minkyung, Robinson, G Eric, Fontelonga, Tatiana, Kim, Kyung-Tai, Song, Mi-Ryoung, Mastick, Grant S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-975de3c798eef9d6525426687da9fed3b0eabeae107fc40b8eceaf741f7aa7ff3
cites cdi_FETCH-LOGICAL-c594t-975de3c798eef9d6525426687da9fed3b0eabeae107fc40b8eceaf741f7aa7ff3
container_end_page 18
container_issue 1
container_start_page 18
container_title Neural development
container_volume 11
creator Bjorke, Brielle
Shoja-Taheri, Farnaz
Kim, Minkyung
Robinson, G Eric
Fontelonga, Tatiana
Kim, Kyung-Tai
Song, Mi-Ryoung
Mastick, Grant S
description Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.
doi_str_mv 10.1186/s13064-016-0073-y
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5075191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A467452216</galeid><sourcerecordid>A467452216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-975de3c798eef9d6525426687da9fed3b0eabeae107fc40b8eceaf741f7aa7ff3</originalsourceid><addsrcrecordid>eNptkltrFTEUhQex2Iv-AF8k4It9mDaZXOdFKAerhUKx1eeQyeyMKTNJTWbE8--b01Nrj0gg2STfWmFvVlW9JfiEECVOM6FYsBoTUWMsab1-UR0QydpaEcxePqv3q8OcbzHmuBHqVbXfSCmxos1B9XUVw5zMaGYoO5r8kMzsY0DRoWiXMU5xjgkFWFIMGfmMEgzLBu9Rt0Y3o59Pr2MXUfZDMKMPw-tqz5kxw5vH86j6fv7p2-pLfXn1-WJ1dllb3rK5biXvgVrZKgDX9oI3nDVCKNmb1kFPOwymAwMES2cZ7hRYME4y4qQx0jl6VH3c-t4t3QS9hYc-9F3yk0lrHY3Xuy_B_9BD_KU5lpy0pBh8eDRI8ecCedaTzxbG0QSIS9ZEUc4p4UoW9P0_6G1cUun3gRK0xbRlf6nBjKB9cLH8azem-owJyXjTEFGok_9QZfUweRsDOF_udwTHO4LCzPB7HsySs764ud5lyZa1KeacwD3Ng2C9yYzeZkaXzOhNZvS6aN49H-ST4k9I6D3DQ71X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836390394</pqid></control><display><type>article</type><title>Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bjorke, Brielle ; Shoja-Taheri, Farnaz ; Kim, Minkyung ; Robinson, G Eric ; Fontelonga, Tatiana ; Kim, Kyung-Tai ; Song, Mi-Ryoung ; Mastick, Grant S</creator><creatorcontrib>Bjorke, Brielle ; Shoja-Taheri, Farnaz ; Kim, Minkyung ; Robinson, G Eric ; Fontelonga, Tatiana ; Kim, Kyung-Tai ; Song, Mi-Ryoung ; Mastick, Grant S</creatorcontrib><description>Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.</description><identifier>ISSN: 1749-8104</identifier><identifier>EISSN: 1749-8104</identifier><identifier>DOI: 10.1186/s13064-016-0073-y</identifier><identifier>PMID: 27770832</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Axon Guidance ; Cell Movement ; Cellular signal transduction ; Complications and side effects ; Embryonic development ; Intercellular Signaling Peptides and Proteins - physiology ; Membrane Proteins - physiology ; Mesencephalon - physiology ; Mice ; Motor Neurons - physiology ; Nerve Growth Factors - physiology ; Nerve Tissue Proteins - physiology ; Netrin-1 ; Oculomotor Nerve - growth &amp; development ; Oculomotor nerve diseases ; Receptors, Cell Surface ; Receptors, CXCR4 - physiology ; Receptors, Immunologic - physiology ; Roundabout Proteins ; Signal Transduction ; Tumor Suppressor Proteins - physiology</subject><ispartof>Neural development, 2016-10, Vol.11 (1), p.18-18, Article 18</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-975de3c798eef9d6525426687da9fed3b0eabeae107fc40b8eceaf741f7aa7ff3</citedby><cites>FETCH-LOGICAL-c594t-975de3c798eef9d6525426687da9fed3b0eabeae107fc40b8eceaf741f7aa7ff3</cites><orcidid>0000-0002-9148-6194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075191/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1836390394?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27770832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bjorke, Brielle</creatorcontrib><creatorcontrib>Shoja-Taheri, Farnaz</creatorcontrib><creatorcontrib>Kim, Minkyung</creatorcontrib><creatorcontrib>Robinson, G Eric</creatorcontrib><creatorcontrib>Fontelonga, Tatiana</creatorcontrib><creatorcontrib>Kim, Kyung-Tai</creatorcontrib><creatorcontrib>Song, Mi-Ryoung</creatorcontrib><creatorcontrib>Mastick, Grant S</creatorcontrib><title>Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling</title><title>Neural development</title><addtitle>Neural Dev</addtitle><description>Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.</description><subject>Analysis</subject><subject>Animals</subject><subject>Axon Guidance</subject><subject>Cell Movement</subject><subject>Cellular signal transduction</subject><subject>Complications and side effects</subject><subject>Embryonic development</subject><subject>Intercellular Signaling Peptides and Proteins - physiology</subject><subject>Membrane Proteins - physiology</subject><subject>Mesencephalon - physiology</subject><subject>Mice</subject><subject>Motor Neurons - physiology</subject><subject>Nerve Growth Factors - physiology</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Netrin-1</subject><subject>Oculomotor Nerve - growth &amp; development</subject><subject>Oculomotor nerve diseases</subject><subject>Receptors, Cell Surface</subject><subject>Receptors, CXCR4 - physiology</subject><subject>Receptors, Immunologic - physiology</subject><subject>Roundabout Proteins</subject><subject>Signal Transduction</subject><subject>Tumor Suppressor Proteins - physiology</subject><issn>1749-8104</issn><issn>1749-8104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkltrFTEUhQex2Iv-AF8k4It9mDaZXOdFKAerhUKx1eeQyeyMKTNJTWbE8--b01Nrj0gg2STfWmFvVlW9JfiEECVOM6FYsBoTUWMsab1-UR0QydpaEcxePqv3q8OcbzHmuBHqVbXfSCmxos1B9XUVw5zMaGYoO5r8kMzsY0DRoWiXMU5xjgkFWFIMGfmMEgzLBu9Rt0Y3o59Pr2MXUfZDMKMPw-tqz5kxw5vH86j6fv7p2-pLfXn1-WJ1dllb3rK5biXvgVrZKgDX9oI3nDVCKNmb1kFPOwymAwMES2cZ7hRYME4y4qQx0jl6VH3c-t4t3QS9hYc-9F3yk0lrHY3Xuy_B_9BD_KU5lpy0pBh8eDRI8ecCedaTzxbG0QSIS9ZEUc4p4UoW9P0_6G1cUun3gRK0xbRlf6nBjKB9cLH8azem-owJyXjTEFGok_9QZfUweRsDOF_udwTHO4LCzPB7HsySs764ud5lyZa1KeacwD3Ng2C9yYzeZkaXzOhNZvS6aN49H-ST4k9I6D3DQ71X</recordid><startdate>20161022</startdate><enddate>20161022</enddate><creator>Bjorke, Brielle</creator><creator>Shoja-Taheri, Farnaz</creator><creator>Kim, Minkyung</creator><creator>Robinson, G Eric</creator><creator>Fontelonga, Tatiana</creator><creator>Kim, Kyung-Tai</creator><creator>Song, Mi-Ryoung</creator><creator>Mastick, Grant S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9148-6194</orcidid></search><sort><creationdate>20161022</creationdate><title>Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling</title><author>Bjorke, Brielle ; Shoja-Taheri, Farnaz ; Kim, Minkyung ; Robinson, G Eric ; Fontelonga, Tatiana ; Kim, Kyung-Tai ; Song, Mi-Ryoung ; Mastick, Grant S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-975de3c798eef9d6525426687da9fed3b0eabeae107fc40b8eceaf741f7aa7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Axon Guidance</topic><topic>Cell Movement</topic><topic>Cellular signal transduction</topic><topic>Complications and side effects</topic><topic>Embryonic development</topic><topic>Intercellular Signaling Peptides and Proteins - physiology</topic><topic>Membrane Proteins - physiology</topic><topic>Mesencephalon - physiology</topic><topic>Mice</topic><topic>Motor Neurons - physiology</topic><topic>Nerve Growth Factors - physiology</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Netrin-1</topic><topic>Oculomotor Nerve - growth &amp; development</topic><topic>Oculomotor nerve diseases</topic><topic>Receptors, Cell Surface</topic><topic>Receptors, CXCR4 - physiology</topic><topic>Receptors, Immunologic - physiology</topic><topic>Roundabout Proteins</topic><topic>Signal Transduction</topic><topic>Tumor Suppressor Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjorke, Brielle</creatorcontrib><creatorcontrib>Shoja-Taheri, Farnaz</creatorcontrib><creatorcontrib>Kim, Minkyung</creatorcontrib><creatorcontrib>Robinson, G Eric</creatorcontrib><creatorcontrib>Fontelonga, Tatiana</creatorcontrib><creatorcontrib>Kim, Kyung-Tai</creatorcontrib><creatorcontrib>Song, Mi-Ryoung</creatorcontrib><creatorcontrib>Mastick, Grant S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bjorke, Brielle</au><au>Shoja-Taheri, Farnaz</au><au>Kim, Minkyung</au><au>Robinson, G Eric</au><au>Fontelonga, Tatiana</au><au>Kim, Kyung-Tai</au><au>Song, Mi-Ryoung</au><au>Mastick, Grant S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling</atitle><jtitle>Neural development</jtitle><addtitle>Neural Dev</addtitle><date>2016-10-22</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>18</spage><epage>18</epage><pages>18-18</pages><artnum>18</artnum><issn>1749-8104</issn><eissn>1749-8104</eissn><abstract>Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27770832</pmid><doi>10.1186/s13064-016-0073-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9148-6194</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-8104
ispartof Neural development, 2016-10, Vol.11 (1), p.18-18, Article 18
issn 1749-8104
1749-8104
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5075191
source Publicly Available Content Database; PubMed Central
subjects Analysis
Animals
Axon Guidance
Cell Movement
Cellular signal transduction
Complications and side effects
Embryonic development
Intercellular Signaling Peptides and Proteins - physiology
Membrane Proteins - physiology
Mesencephalon - physiology
Mice
Motor Neurons - physiology
Nerve Growth Factors - physiology
Nerve Tissue Proteins - physiology
Netrin-1
Oculomotor Nerve - growth & development
Oculomotor nerve diseases
Receptors, Cell Surface
Receptors, CXCR4 - physiology
Receptors, Immunologic - physiology
Roundabout Proteins
Signal Transduction
Tumor Suppressor Proteins - physiology
title Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contralateral%20migration%20of%20oculomotor%20neurons%20is%20regulated%20by%20Slit/Robo%20signaling&rft.jtitle=Neural%20development&rft.au=Bjorke,%20Brielle&rft.date=2016-10-22&rft.volume=11&rft.issue=1&rft.spage=18&rft.epage=18&rft.pages=18-18&rft.artnum=18&rft.issn=1749-8104&rft.eissn=1749-8104&rft_id=info:doi/10.1186/s13064-016-0073-y&rft_dat=%3Cgale_pubme%3EA467452216%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-975de3c798eef9d6525426687da9fed3b0eabeae107fc40b8eceaf741f7aa7ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836390394&rft_id=info:pmid/27770832&rft_galeid=A467452216&rfr_iscdi=true