Loading…

The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases

In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks th...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2016-09, Vol.291 (40), p.20911-20923
Main Authors: Peterson, Ryan L., Galaleldeen, Ahmad, Villarreal, Johanna, Taylor, Alexander B., Cabelli, Diane E., Hart, P. John, Culotta, Valeria C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-46bbfe217bf71d61ef60bdf7fc2e537c409b8d0157449b38c787d215e3f36ad73
cites cdi_FETCH-LOGICAL-c470t-46bbfe217bf71d61ef60bdf7fc2e537c409b8d0157449b38c787d215e3f36ad73
container_end_page 20923
container_issue 40
container_start_page 20911
container_title The Journal of biological chemistry
container_volume 291
creator Peterson, Ryan L.
Galaleldeen, Ahmad
Villarreal, Johanna
Taylor, Alexander B.
Cabelli, Diane E.
Hart, P. John
Culotta, Valeria C.
description In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.
doi_str_mv 10.1074/jbc.M116.748251
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5076504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820358725</els_id><sourcerecordid>1835389036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-46bbfe217bf71d61ef60bdf7fc2e537c409b8d0157449b38c787d215e3f36ad73</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EokvhzA1FnLhk67HjOLkgVUspSEUgdZG4WYk93nXJ2oudrNh_X69SKjjgy1jyN2_e-BHyGugSqKwu7nq9_AJQL2XVMAFPyAJow0su4MdTsqCUQdky0ZyRFynd0XyqFp6TMyYFF4yxBVmvt1h82x6HsEF_LDpviks9ugMWt27E4gMmt_FFsMXV9LOLxzA6XazCfo-xDH44FrdTvobfzmTWpd00dgnTS_LMdkPCVw_1nHz_eLVefSpvvl5_Xl3elLqSdCyruu8tMpC9lWBqQFvT3lhpNUPBpa5o2zeGgpBV1fa80bKRhoFAbnndGcnPyftZdz_1OzQa_Ri7Qe2j22WvKnRO_fvi3VZtwkEJKmtBqyzwdhYIaXQq6byy3urgPepRAec1QJuhdw9TYvg1YRrVziWNw9B5DFNS0HDBm5byOqMXM6pjSCmiffQCVJ0CUzkwdQpMzYHljjd_r_DI_0koA-0MYP7Ig8N4soleo3Hx5NIE91_xe71ypbs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835389036</pqid></control><display><type>article</type><title>The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases</title><source>ScienceDirect</source><source>Open Access: PubMed Central</source><creator>Peterson, Ryan L. ; Galaleldeen, Ahmad ; Villarreal, Johanna ; Taylor, Alexander B. ; Cabelli, Diane E. ; Hart, P. John ; Culotta, Valeria C.</creator><creatorcontrib>Peterson, Ryan L. ; Galaleldeen, Ahmad ; Villarreal, Johanna ; Taylor, Alexander B. ; Cabelli, Diane E. ; Hart, P. John ; Culotta, Valeria C. ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.748251</identifier><identifier>PMID: 27535222</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Candida albicans - enzymology ; Candida albicans - genetics ; Catalysis ; copper ; Copper - chemistry ; Copper - metabolism ; enzyme ; Enzymology ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; fungi ; Hydrogen-Ion Concentration ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Oomycetes - enzymology ; Oomycetes - genetics ; superoxide dismutase (SOD) ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; superoxide ion ; x-ray crystallography ; Zinc - chemistry ; Zinc - metabolism</subject><ispartof>The Journal of biological chemistry, 2016-09, Vol.291 (40), p.20911-20923</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-46bbfe217bf71d61ef60bdf7fc2e537c409b8d0157449b38c787d215e3f36ad73</citedby><cites>FETCH-LOGICAL-c470t-46bbfe217bf71d61ef60bdf7fc2e537c409b8d0157449b38c787d215e3f36ad73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076504/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820358725$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27535222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1336119$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, Ryan L.</creatorcontrib><creatorcontrib>Galaleldeen, Ahmad</creatorcontrib><creatorcontrib>Villarreal, Johanna</creatorcontrib><creatorcontrib>Taylor, Alexander B.</creatorcontrib><creatorcontrib>Cabelli, Diane E.</creatorcontrib><creatorcontrib>Hart, P. John</creatorcontrib><creatorcontrib>Culotta, Valeria C.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.</description><subject>Candida albicans - enzymology</subject><subject>Candida albicans - genetics</subject><subject>Catalysis</subject><subject>copper</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>enzyme</subject><subject>Enzymology</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>fungi</subject><subject>Hydrogen-Ion Concentration</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Oomycetes - enzymology</subject><subject>Oomycetes - genetics</subject><subject>superoxide dismutase (SOD)</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>superoxide ion</subject><subject>x-ray crystallography</subject><subject>Zinc - chemistry</subject><subject>Zinc - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EokvhzA1FnLhk67HjOLkgVUspSEUgdZG4WYk93nXJ2oudrNh_X69SKjjgy1jyN2_e-BHyGugSqKwu7nq9_AJQL2XVMAFPyAJow0su4MdTsqCUQdky0ZyRFynd0XyqFp6TMyYFF4yxBVmvt1h82x6HsEF_LDpviks9ugMWt27E4gMmt_FFsMXV9LOLxzA6XazCfo-xDH44FrdTvobfzmTWpd00dgnTS_LMdkPCVw_1nHz_eLVefSpvvl5_Xl3elLqSdCyruu8tMpC9lWBqQFvT3lhpNUPBpa5o2zeGgpBV1fa80bKRhoFAbnndGcnPyftZdz_1OzQa_Ri7Qe2j22WvKnRO_fvi3VZtwkEJKmtBqyzwdhYIaXQq6byy3urgPepRAec1QJuhdw9TYvg1YRrVziWNw9B5DFNS0HDBm5byOqMXM6pjSCmiffQCVJ0CUzkwdQpMzYHljjd_r_DI_0koA-0MYP7Ig8N4soleo3Hx5NIE91_xe71ypbs</recordid><startdate>20160930</startdate><enddate>20160930</enddate><creator>Peterson, Ryan L.</creator><creator>Galaleldeen, Ahmad</creator><creator>Villarreal, Johanna</creator><creator>Taylor, Alexander B.</creator><creator>Cabelli, Diane E.</creator><creator>Hart, P. John</creator><creator>Culotta, Valeria C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160930</creationdate><title>The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases</title><author>Peterson, Ryan L. ; Galaleldeen, Ahmad ; Villarreal, Johanna ; Taylor, Alexander B. ; Cabelli, Diane E. ; Hart, P. John ; Culotta, Valeria C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-46bbfe217bf71d61ef60bdf7fc2e537c409b8d0157449b38c787d215e3f36ad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Candida albicans - enzymology</topic><topic>Candida albicans - genetics</topic><topic>Catalysis</topic><topic>copper</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>enzyme</topic><topic>Enzymology</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>fungi</topic><topic>Hydrogen-Ion Concentration</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Oomycetes - enzymology</topic><topic>Oomycetes - genetics</topic><topic>superoxide dismutase (SOD)</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>superoxide ion</topic><topic>x-ray crystallography</topic><topic>Zinc - chemistry</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Ryan L.</creatorcontrib><creatorcontrib>Galaleldeen, Ahmad</creatorcontrib><creatorcontrib>Villarreal, Johanna</creatorcontrib><creatorcontrib>Taylor, Alexander B.</creatorcontrib><creatorcontrib>Cabelli, Diane E.</creatorcontrib><creatorcontrib>Hart, P. John</creatorcontrib><creatorcontrib>Culotta, Valeria C.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Ryan L.</au><au>Galaleldeen, Ahmad</au><au>Villarreal, Johanna</au><au>Taylor, Alexander B.</au><au>Cabelli, Diane E.</au><au>Hart, P. John</au><au>Culotta, Valeria C.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-09-30</date><risdate>2016</risdate><volume>291</volume><issue>40</issue><spage>20911</spage><epage>20923</epage><pages>20911-20923</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27535222</pmid><doi>10.1074/jbc.M116.748251</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-09, Vol.291 (40), p.20911-20923
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5076504
source ScienceDirect; Open Access: PubMed Central
subjects Candida albicans - enzymology
Candida albicans - genetics
Catalysis
copper
Copper - chemistry
Copper - metabolism
enzyme
Enzymology
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
fungi
Hydrogen-Ion Concentration
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Oomycetes - enzymology
Oomycetes - genetics
superoxide dismutase (SOD)
Superoxide Dismutase - chemistry
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
superoxide ion
x-ray crystallography
Zinc - chemistry
Zinc - metabolism
title The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Phylogeny%20and%20Active%20Site%20Design%20of%20Eukaryotic%20Copper-only%20Superoxide%20Dismutases&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Peterson,%20Ryan%20L.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2016-09-30&rft.volume=291&rft.issue=40&rft.spage=20911&rft.epage=20923&rft.pages=20911-20923&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.748251&rft_dat=%3Cproquest_pubme%3E1835389036%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-46bbfe217bf71d61ef60bdf7fc2e537c409b8d0157449b38c787d215e3f36ad73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835389036&rft_id=info:pmid/27535222&rfr_iscdi=true