Loading…
Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E‐deficient mice and cells
Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine...
Saved in:
Published in: | Journal of cellular and molecular medicine 2016-11, Vol.20 (11), p.2160-2172 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5146-dc24f8e5c8cff51e7fda93379882e102665145ad0fcbc143f486c3c9abf0c72d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5146-dc24f8e5c8cff51e7fda93379882e102665145ad0fcbc143f486c3c9abf0c72d3 |
container_end_page | 2172 |
container_issue | 11 |
container_start_page | 2160 |
container_title | Journal of cellular and molecular medicine |
container_volume | 20 |
creator | Ryu, Hye‐Myung Kim, You‐Jin Oh, Eun‐Joo Oh, Se‐Hyun Choi, Ji‐Young Cho, Jang‐Hee Kim, Chan‐Duck Park, Sun‐Hee Kim, Yong‐Lim |
description | Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)‐deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP‐binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N‐acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE‐siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE‐deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine. |
doi_str_mv | 10.1111/jcmm.12916 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5082407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289998839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5146-dc24f8e5c8cff51e7fda93379882e102665145ad0fcbc143f486c3c9abf0c72d3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhS3UqlDohgeoInVTVRrwT-LYm0poxK9A3ZS15bmxOx45dhonwOz6CDxjn6QOM6CWRb2wr-1PR-feg9AhwUckr-MVtO0RoZLwHbRHKkFnpWTlm21NBBO76H1KK4wZJ0y-Q7u0ZpKLiu-hh4t1Fx90GJYumMKFZgSTClhGb9Jg-ugLDTC2o9eDi6HQockQuCFDelhmIIGfdpfye6G76F0Xuz4OJl9Pf_96bIx14EwYitaBeRIA4306QG-t9sl82J776Pbs9Pv8Ynb97fxyfnI9g4qUfNYALa0wFQiwtiKmto2WjNVSCGoIppxnrNINtrAAUjJbCg4MpF5YDDVt2D76utHtxkVrGshOeu1V17tW92sVtVP__gS3VD_inaqwoCWus8DnrUAff455Kqp1aWpBBxPHpIigvCYVxjKjn16hqzj2IbenKBVSZtNsor5sKMhzS72xL2YIVlOgagpUPQWa4Y9_239BnxPMANkA986b9X-k1NX85mYj-gcb8bCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289998839</pqid></control><display><type>article</type><title>Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E‐deficient mice and cells</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Wiley-Blackwell Titles (Open access)</source><creator>Ryu, Hye‐Myung ; Kim, You‐Jin ; Oh, Eun‐Joo ; Oh, Se‐Hyun ; Choi, Ji‐Young ; Cho, Jang‐Hee ; Kim, Chan‐Duck ; Park, Sun‐Hee ; Kim, Yong‐Lim</creator><creatorcontrib>Ryu, Hye‐Myung ; Kim, You‐Jin ; Oh, Eun‐Joo ; Oh, Se‐Hyun ; Choi, Ji‐Young ; Cho, Jang‐Hee ; Kim, Chan‐Duck ; Park, Sun‐Hee ; Kim, Yong‐Lim</creatorcontrib><description>Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)‐deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP‐binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N‐acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE‐siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE‐deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.12916</identifier><identifier>PMID: 27396856</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>ABCA1 protein ; Accumulation ; Acetylcysteine - pharmacology ; Alcohol use ; Allopurinol ; Allopurinol - pharmacology ; Animals ; Antioxidants ; APOE ; Apolipoprotein E ; Apolipoproteins ; Apolipoproteins E - deficiency ; Apolipoproteins E - metabolism ; Arteriosclerosis ; Atherosclerosis ; Atherosclerosis - blood ; Atherosclerosis - pathology ; ATP-binding protein ; Cholesterol ; Cholesterol - blood ; Cholesterol - metabolism ; Coronary vessels ; Diet ; Down-Regulation - drug effects ; Down-Regulation - genetics ; Drinking behavior ; Enzymes ; Gene expression ; Hemodialysis ; Hep G2 Cells ; Humans ; Hydrogen peroxide ; Hydrogen Peroxide - toxicity ; Hypercholesterolemia - pathology ; Hypoxanthine ; Hypoxanthine - pharmacology ; Laboratory animals ; Lipids ; Lipogenesis - drug effects ; Lipogenesis - genetics ; Liver ; Male ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Biological ; mRNA ; Original ; Oxidative stress ; Plaque, Atherosclerotic - blood ; Plaque, Atherosclerotic - metabolism ; Plaque, Atherosclerotic - pathology ; Reactive oxygen species ; ROS ; siRNA ; Smoking ; Up-Regulation - drug effects ; Uric acid ; Xanthine oxidase</subject><ispartof>Journal of cellular and molecular medicine, 2016-11, Vol.20 (11), p.2160-2172</ispartof><rights>2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5146-dc24f8e5c8cff51e7fda93379882e102665145ad0fcbc143f486c3c9abf0c72d3</citedby><cites>FETCH-LOGICAL-c5146-dc24f8e5c8cff51e7fda93379882e102665145ad0fcbc143f486c3c9abf0c72d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289998839/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289998839?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27396856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryu, Hye‐Myung</creatorcontrib><creatorcontrib>Kim, You‐Jin</creatorcontrib><creatorcontrib>Oh, Eun‐Joo</creatorcontrib><creatorcontrib>Oh, Se‐Hyun</creatorcontrib><creatorcontrib>Choi, Ji‐Young</creatorcontrib><creatorcontrib>Cho, Jang‐Hee</creatorcontrib><creatorcontrib>Kim, Chan‐Duck</creatorcontrib><creatorcontrib>Park, Sun‐Hee</creatorcontrib><creatorcontrib>Kim, Yong‐Lim</creatorcontrib><title>Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E‐deficient mice and cells</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)‐deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP‐binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N‐acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE‐siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE‐deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine.</description><subject>ABCA1 protein</subject><subject>Accumulation</subject><subject>Acetylcysteine - pharmacology</subject><subject>Alcohol use</subject><subject>Allopurinol</subject><subject>Allopurinol - pharmacology</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>APOE</subject><subject>Apolipoprotein E</subject><subject>Apolipoproteins</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apolipoproteins E - metabolism</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - blood</subject><subject>Atherosclerosis - pathology</subject><subject>ATP-binding protein</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>Cholesterol - metabolism</subject><subject>Coronary vessels</subject><subject>Diet</subject><subject>Down-Regulation - drug effects</subject><subject>Down-Regulation - genetics</subject><subject>Drinking behavior</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Hemodialysis</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - toxicity</subject><subject>Hypercholesterolemia - pathology</subject><subject>Hypoxanthine</subject><subject>Hypoxanthine - pharmacology</subject><subject>Laboratory animals</subject><subject>Lipids</subject><subject>Lipogenesis - drug effects</subject><subject>Lipogenesis - genetics</subject><subject>Liver</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Biological</subject><subject>mRNA</subject><subject>Original</subject><subject>Oxidative stress</subject><subject>Plaque, Atherosclerotic - blood</subject><subject>Plaque, Atherosclerotic - metabolism</subject><subject>Plaque, Atherosclerotic - pathology</subject><subject>Reactive oxygen species</subject><subject>ROS</subject><subject>siRNA</subject><subject>Smoking</subject><subject>Up-Regulation - drug effects</subject><subject>Uric acid</subject><subject>Xanthine oxidase</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1O3DAUhS3UqlDohgeoInVTVRrwT-LYm0poxK9A3ZS15bmxOx45dhonwOz6CDxjn6QOM6CWRb2wr-1PR-feg9AhwUckr-MVtO0RoZLwHbRHKkFnpWTlm21NBBO76H1KK4wZJ0y-Q7u0ZpKLiu-hh4t1Fx90GJYumMKFZgSTClhGb9Jg-ugLDTC2o9eDi6HQockQuCFDelhmIIGfdpfye6G76F0Xuz4OJl9Pf_96bIx14EwYitaBeRIA4306QG-t9sl82J776Pbs9Pv8Ynb97fxyfnI9g4qUfNYALa0wFQiwtiKmto2WjNVSCGoIppxnrNINtrAAUjJbCg4MpF5YDDVt2D76utHtxkVrGshOeu1V17tW92sVtVP__gS3VD_inaqwoCWus8DnrUAff455Kqp1aWpBBxPHpIigvCYVxjKjn16hqzj2IbenKBVSZtNsor5sKMhzS72xL2YIVlOgagpUPQWa4Y9_239BnxPMANkA986b9X-k1NX85mYj-gcb8bCA</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Ryu, Hye‐Myung</creator><creator>Kim, You‐Jin</creator><creator>Oh, Eun‐Joo</creator><creator>Oh, Se‐Hyun</creator><creator>Choi, Ji‐Young</creator><creator>Cho, Jang‐Hee</creator><creator>Kim, Chan‐Duck</creator><creator>Park, Sun‐Hee</creator><creator>Kim, Yong‐Lim</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201611</creationdate><title>Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E‐deficient mice and cells</title><author>Ryu, Hye‐Myung ; Kim, You‐Jin ; Oh, Eun‐Joo ; Oh, Se‐Hyun ; Choi, Ji‐Young ; Cho, Jang‐Hee ; Kim, Chan‐Duck ; Park, Sun‐Hee ; Kim, Yong‐Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5146-dc24f8e5c8cff51e7fda93379882e102665145ad0fcbc143f486c3c9abf0c72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ABCA1 protein</topic><topic>Accumulation</topic><topic>Acetylcysteine - pharmacology</topic><topic>Alcohol use</topic><topic>Allopurinol</topic><topic>Allopurinol - pharmacology</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>APOE</topic><topic>Apolipoprotein E</topic><topic>Apolipoproteins</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apolipoproteins E - metabolism</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - blood</topic><topic>Atherosclerosis - pathology</topic><topic>ATP-binding protein</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>Cholesterol - metabolism</topic><topic>Coronary vessels</topic><topic>Diet</topic><topic>Down-Regulation - drug effects</topic><topic>Down-Regulation - genetics</topic><topic>Drinking behavior</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Hemodialysis</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - toxicity</topic><topic>Hypercholesterolemia - pathology</topic><topic>Hypoxanthine</topic><topic>Hypoxanthine - pharmacology</topic><topic>Laboratory animals</topic><topic>Lipids</topic><topic>Lipogenesis - drug effects</topic><topic>Lipogenesis - genetics</topic><topic>Liver</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Biological</topic><topic>mRNA</topic><topic>Original</topic><topic>Oxidative stress</topic><topic>Plaque, Atherosclerotic - blood</topic><topic>Plaque, Atherosclerotic - metabolism</topic><topic>Plaque, Atherosclerotic - pathology</topic><topic>Reactive oxygen species</topic><topic>ROS</topic><topic>siRNA</topic><topic>Smoking</topic><topic>Up-Regulation - drug effects</topic><topic>Uric acid</topic><topic>Xanthine oxidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Hye‐Myung</creatorcontrib><creatorcontrib>Kim, You‐Jin</creatorcontrib><creatorcontrib>Oh, Eun‐Joo</creatorcontrib><creatorcontrib>Oh, Se‐Hyun</creatorcontrib><creatorcontrib>Choi, Ji‐Young</creatorcontrib><creatorcontrib>Cho, Jang‐Hee</creatorcontrib><creatorcontrib>Kim, Chan‐Duck</creatorcontrib><creatorcontrib>Park, Sun‐Hee</creatorcontrib><creatorcontrib>Kim, Yong‐Lim</creatorcontrib><collection>Wiley-Blackwell Titles (Open access)</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Hye‐Myung</au><au>Kim, You‐Jin</au><au>Oh, Eun‐Joo</au><au>Oh, Se‐Hyun</au><au>Choi, Ji‐Young</au><au>Cho, Jang‐Hee</au><au>Kim, Chan‐Duck</au><au>Park, Sun‐Hee</au><au>Kim, Yong‐Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E‐deficient mice and cells</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2016-11</date><risdate>2016</risdate><volume>20</volume><issue>11</issue><spage>2160</spage><epage>2172</epage><pages>2160-2172</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)‐deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP‐binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N‐acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE‐siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE‐deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>27396856</pmid><doi>10.1111/jcmm.12916</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2016-11, Vol.20 (11), p.2160-2172 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5082407 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Wiley-Blackwell Titles (Open access) |
subjects | ABCA1 protein Accumulation Acetylcysteine - pharmacology Alcohol use Allopurinol Allopurinol - pharmacology Animals Antioxidants APOE Apolipoprotein E Apolipoproteins Apolipoproteins E - deficiency Apolipoproteins E - metabolism Arteriosclerosis Atherosclerosis Atherosclerosis - blood Atherosclerosis - pathology ATP-binding protein Cholesterol Cholesterol - blood Cholesterol - metabolism Coronary vessels Diet Down-Regulation - drug effects Down-Regulation - genetics Drinking behavior Enzymes Gene expression Hemodialysis Hep G2 Cells Humans Hydrogen peroxide Hydrogen Peroxide - toxicity Hypercholesterolemia - pathology Hypoxanthine Hypoxanthine - pharmacology Laboratory animals Lipids Lipogenesis - drug effects Lipogenesis - genetics Liver Male Metabolism Mice Mice, Inbred C57BL Mice, Knockout Models, Biological mRNA Original Oxidative stress Plaque, Atherosclerotic - blood Plaque, Atherosclerotic - metabolism Plaque, Atherosclerotic - pathology Reactive oxygen species ROS siRNA Smoking Up-Regulation - drug effects Uric acid Xanthine oxidase |
title | Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E‐deficient mice and cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxanthine%20induces%20cholesterol%20accumulation%20and%20incites%20atherosclerosis%20in%20apolipoprotein%20E%E2%80%90deficient%20mice%20and%20cells&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Ryu,%20Hye%E2%80%90Myung&rft.date=2016-11&rft.volume=20&rft.issue=11&rft.spage=2160&rft.epage=2172&rft.pages=2160-2172&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.12916&rft_dat=%3Cproquest_pubme%3E2289998839%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5146-dc24f8e5c8cff51e7fda93379882e102665145ad0fcbc143f486c3c9abf0c72d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289998839&rft_id=info:pmid/27396856&rfr_iscdi=true |