Loading…

A Mouse Model of Retinal Ischemia-Reperfusion Injury Through Elevation of Intraocular Pressure

Retinal ischemia-reperfusion (I/R) is a pathophysiological process contributing to cellular damage in multiple ocular conditions, including glaucoma, diabetic retinopathy, and retinal vascular occlusions. Rodent models of I/R injury are providing significant insights into mechanisms and treatment st...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visualized experiments 2016-07 (113)
Main Authors: Hartsock, Matthew J, Cho, Hongkwan, Wu, Lijuan, Chen, Wan-Ju, Gong, Junsong, Duh, Elia J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Retinal ischemia-reperfusion (I/R) is a pathophysiological process contributing to cellular damage in multiple ocular conditions, including glaucoma, diabetic retinopathy, and retinal vascular occlusions. Rodent models of I/R injury are providing significant insights into mechanisms and treatment strategies for human I/R injury, especially with regard to neurodegenerative damage in the retinal neurovascular unit. Presented here is a protocol for inducing retinal I/R injury in mice through elevation of intraocular pressure (IOP). In this protocol, the ocular anterior chamber is cannulated with a needle, through which flows the drip of an elevated saline reservoir. Using this drip to raise IOP above systolic arterial blood pressure, a practitioner temporarily halts inner retinal blood flow (ischemia). When circulation is reinstated (reperfusion) by removal of the cannula, severe cellular damage ensues, resulting ultimately in retinal neurodegeneration. Recent studies demonstrate inflammation, vascular permeability, and capillary degeneration as additional elements of this model. Compared to alternative retinal I/R methodologies, such as retinal arterial ligation, retinal I/R injury by elevated IOP offers advantages in its anatomical specificity, experimental tractability, and technical accessibility, presenting itself as a valuable tool for examining neuronal pathogenesis and therapy in the retinal neurovascular unit.
ISSN:1940-087X
1940-087X
DOI:10.3791/54065