Loading…

GEN3VA: aggregation and analysis of gene expression signatures from related studies

Genome-wide gene expression profiling of mammalian cells is becoming a staple of many published biomedical and biological research studies. Such data is deposited into data repositories such as the Gene Expression Omnibus (GEO) for potential reuse. However, these repositories currently do not provid...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2016-11, Vol.17 (1), p.461-461, Article 461
Main Authors: Gundersen, Gregory W, Jagodnik, Kathleen M, Woodland, Holly, Fernandez, Nicholas F, Sani, Kevin, Dohlman, Anders B, Ung, Peter Man-Un, Monteiro, Caroline D, Schlessinger, Avner, Ma'ayan, Avi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-44add7aebd388f7911c398f4057cd32f53daa375625ed1bfadd18478b2c4ae7a3
cites cdi_FETCH-LOGICAL-c528t-44add7aebd388f7911c398f4057cd32f53daa375625ed1bfadd18478b2c4ae7a3
container_end_page 461
container_issue 1
container_start_page 461
container_title BMC bioinformatics
container_volume 17
creator Gundersen, Gregory W
Jagodnik, Kathleen M
Woodland, Holly
Fernandez, Nicholas F
Sani, Kevin
Dohlman, Anders B
Ung, Peter Man-Un
Monteiro, Caroline D
Schlessinger, Avner
Ma'ayan, Avi
description Genome-wide gene expression profiling of mammalian cells is becoming a staple of many published biomedical and biological research studies. Such data is deposited into data repositories such as the Gene Expression Omnibus (GEO) for potential reuse. However, these repositories currently do not provide simple interfaces to systematically analyze collections of related studies. Here we present GENE Expression and Enrichment Vector Analyzer (GEN3VA), a web-based system that enables the integrative analysis of aggregated collections of tagged gene expression signatures identified and extracted from GEO. Each tagged collection of signatures is presented in a report that consists of heatmaps of the differentially expressed genes; principal component analysis of all signatures; enrichment analysis with several gene set libraries across all signatures, which we term enrichment vector analysis; and global mapping of small molecules that are predicted to reverse or mimic each signature in the aggregate. We demonstrate how GEN3VA can be used to identify common molecular mechanisms of aging by analyzing tagged signatures from 244 studies that compared young vs. old tissues in mammalian systems. In a second case study, we collected 86 signatures from treatment of human cells with dexamethasone, a glucocorticoid receptor (GR) agonist. Our analysis confirms consensus GR target genes and predicts potential drug mimickers. GEN3VA can be used to identify, aggregate, and analyze themed collections of gene expression signatures from diverse but related studies. Such integrative analyses can be used to address concerns about data reproducibility, confirm results across labs, and discover new collective knowledge by data reuse. GEN3VA is an open-source web-based system that is freely available at: http://amp.pharm.mssm.edu/gen3va .
doi_str_mv 10.1186/s12859-016-1321-1
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470389528</galeid><sourcerecordid>A470389528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-44add7aebd388f7911c398f4057cd32f53daa375625ed1bfadd18478b2c4ae7a3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhi1ERcvCD-CCInEphxRPbMcOB6RV1ZZKFUgUuFreeBxcJfFiJ1X77-tl29JFyPLnPDMjv3oJeQP0CEDVHxJUSjQlhboEVkEJz8gBcAllBVQ8f3LeJy9TuqIUpKLiBdmvpOK1ovUBuTw7-cJ-Lj8WpusidmbyYSzMaPM0_W3yqQiu6HDEAm_WEVPaxJPvRjPN-Vq4GIYiYm8mtEWaZusxvSJ7zvQJX9_vC_Lj9OT78efy4uvZ-fHyomxFpaaSc2OtNLiyTCknG4CWNcpxKmRrWeUEs8YwKepKoIWVyzQoLtWqarlBadiCfNrWXc-rAW2L4xRNr9fRDybe6mC83o2M_pfuwrUWAFk5lgsc3heI4feMadKDTy32vRkxzEnndgCMN0Jl9N0_6FWYY9boDyWAN8DEX6ozPWo_upD7tpuiesklZarJP8_U0X-oPCwOvg0jOp_fdxLe7yRkZsKbqTNzSvr88tsuC1u2jSGliO5RD6B64xq9dY3OrtEb1-RlQd4-FfIx48Em7A6Am7vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845149135</pqid></control><display><type>article</type><title>GEN3VA: aggregation and analysis of gene expression signatures from related studies</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Gundersen, Gregory W ; Jagodnik, Kathleen M ; Woodland, Holly ; Fernandez, Nicholas F ; Sani, Kevin ; Dohlman, Anders B ; Ung, Peter Man-Un ; Monteiro, Caroline D ; Schlessinger, Avner ; Ma'ayan, Avi</creator><creatorcontrib>Gundersen, Gregory W ; Jagodnik, Kathleen M ; Woodland, Holly ; Fernandez, Nicholas F ; Sani, Kevin ; Dohlman, Anders B ; Ung, Peter Man-Un ; Monteiro, Caroline D ; Schlessinger, Avner ; Ma'ayan, Avi</creatorcontrib><description>Genome-wide gene expression profiling of mammalian cells is becoming a staple of many published biomedical and biological research studies. Such data is deposited into data repositories such as the Gene Expression Omnibus (GEO) for potential reuse. However, these repositories currently do not provide simple interfaces to systematically analyze collections of related studies. Here we present GENE Expression and Enrichment Vector Analyzer (GEN3VA), a web-based system that enables the integrative analysis of aggregated collections of tagged gene expression signatures identified and extracted from GEO. Each tagged collection of signatures is presented in a report that consists of heatmaps of the differentially expressed genes; principal component analysis of all signatures; enrichment analysis with several gene set libraries across all signatures, which we term enrichment vector analysis; and global mapping of small molecules that are predicted to reverse or mimic each signature in the aggregate. We demonstrate how GEN3VA can be used to identify common molecular mechanisms of aging by analyzing tagged signatures from 244 studies that compared young vs. old tissues in mammalian systems. In a second case study, we collected 86 signatures from treatment of human cells with dexamethasone, a glucocorticoid receptor (GR) agonist. Our analysis confirms consensus GR target genes and predicts potential drug mimickers. GEN3VA can be used to identify, aggregate, and analyze themed collections of gene expression signatures from diverse but related studies. Such integrative analyses can be used to address concerns about data reproducibility, confirm results across labs, and discover new collective knowledge by data reuse. GEN3VA is an open-source web-based system that is freely available at: http://amp.pharm.mssm.edu/gen3va .</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-016-1321-1</identifier><identifier>PMID: 27846806</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Aging - genetics ; Animals ; Dexamethasone - pharmacology ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic - drug effects ; Genome-wide association studies ; Humans ; Observations ; Reproducibility of Results ; Software ; Transcriptome</subject><ispartof>BMC bioinformatics, 2016-11, Vol.17 (1), p.461-461, Article 461</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-44add7aebd388f7911c398f4057cd32f53daa375625ed1bfadd18478b2c4ae7a3</citedby><cites>FETCH-LOGICAL-c528t-44add7aebd388f7911c398f4057cd32f53daa375625ed1bfadd18478b2c4ae7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111283/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1845149135?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27846806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gundersen, Gregory W</creatorcontrib><creatorcontrib>Jagodnik, Kathleen M</creatorcontrib><creatorcontrib>Woodland, Holly</creatorcontrib><creatorcontrib>Fernandez, Nicholas F</creatorcontrib><creatorcontrib>Sani, Kevin</creatorcontrib><creatorcontrib>Dohlman, Anders B</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Monteiro, Caroline D</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Ma'ayan, Avi</creatorcontrib><title>GEN3VA: aggregation and analysis of gene expression signatures from related studies</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Genome-wide gene expression profiling of mammalian cells is becoming a staple of many published biomedical and biological research studies. Such data is deposited into data repositories such as the Gene Expression Omnibus (GEO) for potential reuse. However, these repositories currently do not provide simple interfaces to systematically analyze collections of related studies. Here we present GENE Expression and Enrichment Vector Analyzer (GEN3VA), a web-based system that enables the integrative analysis of aggregated collections of tagged gene expression signatures identified and extracted from GEO. Each tagged collection of signatures is presented in a report that consists of heatmaps of the differentially expressed genes; principal component analysis of all signatures; enrichment analysis with several gene set libraries across all signatures, which we term enrichment vector analysis; and global mapping of small molecules that are predicted to reverse or mimic each signature in the aggregate. We demonstrate how GEN3VA can be used to identify common molecular mechanisms of aging by analyzing tagged signatures from 244 studies that compared young vs. old tissues in mammalian systems. In a second case study, we collected 86 signatures from treatment of human cells with dexamethasone, a glucocorticoid receptor (GR) agonist. Our analysis confirms consensus GR target genes and predicts potential drug mimickers. GEN3VA can be used to identify, aggregate, and analyze themed collections of gene expression signatures from diverse but related studies. Such integrative analyses can be used to address concerns about data reproducibility, confirm results across labs, and discover new collective knowledge by data reuse. GEN3VA is an open-source web-based system that is freely available at: http://amp.pharm.mssm.edu/gen3va .</description><subject>Aging - genetics</subject><subject>Animals</subject><subject>Dexamethasone - pharmacology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genome-wide association studies</subject><subject>Humans</subject><subject>Observations</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Transcriptome</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1v1DAQhi1ERcvCD-CCInEphxRPbMcOB6RV1ZZKFUgUuFreeBxcJfFiJ1X77-tl29JFyPLnPDMjv3oJeQP0CEDVHxJUSjQlhboEVkEJz8gBcAllBVQ8f3LeJy9TuqIUpKLiBdmvpOK1ovUBuTw7-cJ-Lj8WpusidmbyYSzMaPM0_W3yqQiu6HDEAm_WEVPaxJPvRjPN-Vq4GIYiYm8mtEWaZusxvSJ7zvQJX9_vC_Lj9OT78efy4uvZ-fHyomxFpaaSc2OtNLiyTCknG4CWNcpxKmRrWeUEs8YwKepKoIWVyzQoLtWqarlBadiCfNrWXc-rAW2L4xRNr9fRDybe6mC83o2M_pfuwrUWAFk5lgsc3heI4feMadKDTy32vRkxzEnndgCMN0Jl9N0_6FWYY9boDyWAN8DEX6ozPWo_upD7tpuiesklZarJP8_U0X-oPCwOvg0jOp_fdxLe7yRkZsKbqTNzSvr88tsuC1u2jSGliO5RD6B64xq9dY3OrtEb1-RlQd4-FfIx48Em7A6Am7vg</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Gundersen, Gregory W</creator><creator>Jagodnik, Kathleen M</creator><creator>Woodland, Holly</creator><creator>Fernandez, Nicholas F</creator><creator>Sani, Kevin</creator><creator>Dohlman, Anders B</creator><creator>Ung, Peter Man-Un</creator><creator>Monteiro, Caroline D</creator><creator>Schlessinger, Avner</creator><creator>Ma'ayan, Avi</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161115</creationdate><title>GEN3VA: aggregation and analysis of gene expression signatures from related studies</title><author>Gundersen, Gregory W ; Jagodnik, Kathleen M ; Woodland, Holly ; Fernandez, Nicholas F ; Sani, Kevin ; Dohlman, Anders B ; Ung, Peter Man-Un ; Monteiro, Caroline D ; Schlessinger, Avner ; Ma'ayan, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-44add7aebd388f7911c398f4057cd32f53daa375625ed1bfadd18478b2c4ae7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aging - genetics</topic><topic>Animals</topic><topic>Dexamethasone - pharmacology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genome-wide association studies</topic><topic>Humans</topic><topic>Observations</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gundersen, Gregory W</creatorcontrib><creatorcontrib>Jagodnik, Kathleen M</creatorcontrib><creatorcontrib>Woodland, Holly</creatorcontrib><creatorcontrib>Fernandez, Nicholas F</creatorcontrib><creatorcontrib>Sani, Kevin</creatorcontrib><creatorcontrib>Dohlman, Anders B</creatorcontrib><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Monteiro, Caroline D</creatorcontrib><creatorcontrib>Schlessinger, Avner</creatorcontrib><creatorcontrib>Ma'ayan, Avi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gundersen, Gregory W</au><au>Jagodnik, Kathleen M</au><au>Woodland, Holly</au><au>Fernandez, Nicholas F</au><au>Sani, Kevin</au><au>Dohlman, Anders B</au><au>Ung, Peter Man-Un</au><au>Monteiro, Caroline D</au><au>Schlessinger, Avner</au><au>Ma'ayan, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEN3VA: aggregation and analysis of gene expression signatures from related studies</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2016-11-15</date><risdate>2016</risdate><volume>17</volume><issue>1</issue><spage>461</spage><epage>461</epage><pages>461-461</pages><artnum>461</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Genome-wide gene expression profiling of mammalian cells is becoming a staple of many published biomedical and biological research studies. Such data is deposited into data repositories such as the Gene Expression Omnibus (GEO) for potential reuse. However, these repositories currently do not provide simple interfaces to systematically analyze collections of related studies. Here we present GENE Expression and Enrichment Vector Analyzer (GEN3VA), a web-based system that enables the integrative analysis of aggregated collections of tagged gene expression signatures identified and extracted from GEO. Each tagged collection of signatures is presented in a report that consists of heatmaps of the differentially expressed genes; principal component analysis of all signatures; enrichment analysis with several gene set libraries across all signatures, which we term enrichment vector analysis; and global mapping of small molecules that are predicted to reverse or mimic each signature in the aggregate. We demonstrate how GEN3VA can be used to identify common molecular mechanisms of aging by analyzing tagged signatures from 244 studies that compared young vs. old tissues in mammalian systems. In a second case study, we collected 86 signatures from treatment of human cells with dexamethasone, a glucocorticoid receptor (GR) agonist. Our analysis confirms consensus GR target genes and predicts potential drug mimickers. GEN3VA can be used to identify, aggregate, and analyze themed collections of gene expression signatures from diverse but related studies. Such integrative analyses can be used to address concerns about data reproducibility, confirm results across labs, and discover new collective knowledge by data reuse. GEN3VA is an open-source web-based system that is freely available at: http://amp.pharm.mssm.edu/gen3va .</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27846806</pmid><doi>10.1186/s12859-016-1321-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2016-11, Vol.17 (1), p.461-461, Article 461
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111283
source Access via ProQuest (Open Access); PubMed Central
subjects Aging - genetics
Animals
Dexamethasone - pharmacology
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic - drug effects
Genome-wide association studies
Humans
Observations
Reproducibility of Results
Software
Transcriptome
title GEN3VA: aggregation and analysis of gene expression signatures from related studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEN3VA:%20aggregation%20and%20analysis%20of%20gene%20expression%20signatures%20from%20related%20studies&rft.jtitle=BMC%20bioinformatics&rft.au=Gundersen,%20Gregory%20W&rft.date=2016-11-15&rft.volume=17&rft.issue=1&rft.spage=461&rft.epage=461&rft.pages=461-461&rft.artnum=461&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-016-1321-1&rft_dat=%3Cgale_pubme%3EA470389528%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-44add7aebd388f7911c398f4057cd32f53daa375625ed1bfadd18478b2c4ae7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1845149135&rft_id=info:pmid/27846806&rft_galeid=A470389528&rfr_iscdi=true