Loading…
An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb
The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2016-11, Vol.113 (45), p.12721-12726 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63 |
container_end_page | 12726 |
container_issue | 45 |
container_start_page | 12721 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Kobbi, Lydia Demey-Thomas, Emmanuelle Braye, Floriane Proux, Florence Kolesnikova, Olga Vinh, Joelle Poterszman, Arnaud Bensaude, Olivier |
description | The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity. |
doi_str_mv | 10.1073/pnas.1612331113 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472376</jstor_id><sourcerecordid>26472376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzAlkiQsc0npix44vSKtVyyKtVA7lxMFyHIf1krWD7azaf99EW1ra00h-37zxzEPoPZAzIIKeD16nM-BQUgoA9AVaAJFQcCbJS7QgpBRFzUp2gt6ktCOEyKomr9FJKYQEYGyBfi09tofQj9kFr-MtNsEnGw-2xWt74_aABztk11rcON8mnAPOW4tX7R-Jjc66v83O4OSynSXnt65xGf8ori8um7foVaf7ZN_d11P08_LierUuNlffvq-Wm8IwIXIBDZUtFZIR3RIwuqSaN8BlxVomRW0JByOl7HhNObMd1B1vKJSaNbQ1puP0FH09-g5js7etsT5H3ashuv20kQraqaeKd1v1OxxUNd1MkGoy-HI02D5rWy83an4jwKBitTjAxH6-HxbD39GmrPYuGdv32tswJgU1rXjNGJnRT8_QXRijn04xUYxwLoUUE3V-pEwMKUXbPfwAiJpDVnPI6jHkqePj__s-8P9SnYAPR2CXcoiPOmeipILTOxB9qxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840669797</pqid></control><display><type>article</type><title>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Kobbi, Lydia ; Demey-Thomas, Emmanuelle ; Braye, Floriane ; Proux, Florence ; Kolesnikova, Olga ; Vinh, Joelle ; Poterszman, Arnaud ; Bensaude, Olivier</creator><creatorcontrib>Kobbi, Lydia ; Demey-Thomas, Emmanuelle ; Braye, Floriane ; Proux, Florence ; Kolesnikova, Olga ; Vinh, Joelle ; Poterszman, Arnaud ; Bensaude, Olivier</creatorcontrib><description>The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1612331113</identifier><identifier>PMID: 27791144</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Binding sites ; Biochemistry, Molecular Biology ; Biological Sciences ; Genes ; Genomics ; Life Sciences ; Peptides ; Proteins ; RNA polymerase</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (45), p.12721-12726</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 8, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</citedby><cites>FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</cites><orcidid>0000-0001-7184-2668 ; 0000-0002-6702-5777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472376$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472376$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27791144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01415487$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobbi, Lydia</creatorcontrib><creatorcontrib>Demey-Thomas, Emmanuelle</creatorcontrib><creatorcontrib>Braye, Floriane</creatorcontrib><creatorcontrib>Proux, Florence</creatorcontrib><creatorcontrib>Kolesnikova, Olga</creatorcontrib><creatorcontrib>Vinh, Joelle</creatorcontrib><creatorcontrib>Poterszman, Arnaud</creatorcontrib><creatorcontrib>Bensaude, Olivier</creatorcontrib><title>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.</description><subject>Amino acids</subject><subject>Binding sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Genes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Peptides</subject><subject>Proteins</subject><subject>RNA polymerase</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EokvhzAlkiQsc0npix44vSKtVyyKtVA7lxMFyHIf1krWD7azaf99EW1ra00h-37zxzEPoPZAzIIKeD16nM-BQUgoA9AVaAJFQcCbJS7QgpBRFzUp2gt6ktCOEyKomr9FJKYQEYGyBfi09tofQj9kFr-MtNsEnGw-2xWt74_aABztk11rcON8mnAPOW4tX7R-Jjc66v83O4OSynSXnt65xGf8ori8um7foVaf7ZN_d11P08_LierUuNlffvq-Wm8IwIXIBDZUtFZIR3RIwuqSaN8BlxVomRW0JByOl7HhNObMd1B1vKJSaNbQ1puP0FH09-g5js7etsT5H3ashuv20kQraqaeKd1v1OxxUNd1MkGoy-HI02D5rWy83an4jwKBitTjAxH6-HxbD39GmrPYuGdv32tswJgU1rXjNGJnRT8_QXRijn04xUYxwLoUUE3V-pEwMKUXbPfwAiJpDVnPI6jHkqePj__s-8P9SnYAPR2CXcoiPOmeipILTOxB9qxA</recordid><startdate>20161108</startdate><enddate>20161108</enddate><creator>Kobbi, Lydia</creator><creator>Demey-Thomas, Emmanuelle</creator><creator>Braye, Floriane</creator><creator>Proux, Florence</creator><creator>Kolesnikova, Olga</creator><creator>Vinh, Joelle</creator><creator>Poterszman, Arnaud</creator><creator>Bensaude, Olivier</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7184-2668</orcidid><orcidid>https://orcid.org/0000-0002-6702-5777</orcidid></search><sort><creationdate>20161108</creationdate><title>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</title><author>Kobbi, Lydia ; Demey-Thomas, Emmanuelle ; Braye, Floriane ; Proux, Florence ; Kolesnikova, Olga ; Vinh, Joelle ; Poterszman, Arnaud ; Bensaude, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino acids</topic><topic>Binding sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Genes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Peptides</topic><topic>Proteins</topic><topic>RNA polymerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobbi, Lydia</creatorcontrib><creatorcontrib>Demey-Thomas, Emmanuelle</creatorcontrib><creatorcontrib>Braye, Floriane</creatorcontrib><creatorcontrib>Proux, Florence</creatorcontrib><creatorcontrib>Kolesnikova, Olga</creatorcontrib><creatorcontrib>Vinh, Joelle</creatorcontrib><creatorcontrib>Poterszman, Arnaud</creatorcontrib><creatorcontrib>Bensaude, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobbi, Lydia</au><au>Demey-Thomas, Emmanuelle</au><au>Braye, Floriane</au><au>Proux, Florence</au><au>Kolesnikova, Olga</au><au>Vinh, Joelle</au><au>Poterszman, Arnaud</au><au>Bensaude, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-11-08</date><risdate>2016</risdate><volume>113</volume><issue>45</issue><spage>12721</spage><epage>12726</epage><pages>12721-12726</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27791144</pmid><doi>10.1073/pnas.1612331113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7184-2668</orcidid><orcidid>https://orcid.org/0000-0002-6702-5777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (45), p.12721-12726 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111705 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Amino acids Binding sites Biochemistry, Molecular Biology Biological Sciences Genes Genomics Life Sciences Peptides Proteins RNA polymerase |
title | An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary%20conserved%20Hexim1%20peptide%20binds%20to%20the%20Cdk9%20catalytic%20site%20to%20inhibit%20P-TEFb&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kobbi,%20Lydia&rft.date=2016-11-08&rft.volume=113&rft.issue=45&rft.spage=12721&rft.epage=12726&rft.pages=12721-12726&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1612331113&rft_dat=%3Cjstor_pubme%3E26472376%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1840669797&rft_id=info:pmid/27791144&rft_jstor_id=26472376&rfr_iscdi=true |