Loading…

An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb

The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2016-11, Vol.113 (45), p.12721-12726
Main Authors: Kobbi, Lydia, Demey-Thomas, Emmanuelle, Braye, Floriane, Proux, Florence, Kolesnikova, Olga, Vinh, Joelle, Poterszman, Arnaud, Bensaude, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63
cites cdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63
container_end_page 12726
container_issue 45
container_start_page 12721
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Kobbi, Lydia
Demey-Thomas, Emmanuelle
Braye, Floriane
Proux, Florence
Kolesnikova, Olga
Vinh, Joelle
Poterszman, Arnaud
Bensaude, Olivier
description The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.
doi_str_mv 10.1073/pnas.1612331113
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472376</jstor_id><sourcerecordid>26472376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzAlkiQsc0npix44vSKtVyyKtVA7lxMFyHIf1krWD7azaf99EW1ra00h-37zxzEPoPZAzIIKeD16nM-BQUgoA9AVaAJFQcCbJS7QgpBRFzUp2gt6ktCOEyKomr9FJKYQEYGyBfi09tofQj9kFr-MtNsEnGw-2xWt74_aABztk11rcON8mnAPOW4tX7R-Jjc66v83O4OSynSXnt65xGf8ori8um7foVaf7ZN_d11P08_LierUuNlffvq-Wm8IwIXIBDZUtFZIR3RIwuqSaN8BlxVomRW0JByOl7HhNObMd1B1vKJSaNbQ1puP0FH09-g5js7etsT5H3ashuv20kQraqaeKd1v1OxxUNd1MkGoy-HI02D5rWy83an4jwKBitTjAxH6-HxbD39GmrPYuGdv32tswJgU1rXjNGJnRT8_QXRijn04xUYxwLoUUE3V-pEwMKUXbPfwAiJpDVnPI6jHkqePj__s-8P9SnYAPR2CXcoiPOmeipILTOxB9qxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840669797</pqid></control><display><type>article</type><title>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Kobbi, Lydia ; Demey-Thomas, Emmanuelle ; Braye, Floriane ; Proux, Florence ; Kolesnikova, Olga ; Vinh, Joelle ; Poterszman, Arnaud ; Bensaude, Olivier</creator><creatorcontrib>Kobbi, Lydia ; Demey-Thomas, Emmanuelle ; Braye, Floriane ; Proux, Florence ; Kolesnikova, Olga ; Vinh, Joelle ; Poterszman, Arnaud ; Bensaude, Olivier</creatorcontrib><description>The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1612331113</identifier><identifier>PMID: 27791144</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Binding sites ; Biochemistry, Molecular Biology ; Biological Sciences ; Genes ; Genomics ; Life Sciences ; Peptides ; Proteins ; RNA polymerase</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (45), p.12721-12726</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 8, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</citedby><cites>FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</cites><orcidid>0000-0001-7184-2668 ; 0000-0002-6702-5777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472376$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472376$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27791144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01415487$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobbi, Lydia</creatorcontrib><creatorcontrib>Demey-Thomas, Emmanuelle</creatorcontrib><creatorcontrib>Braye, Floriane</creatorcontrib><creatorcontrib>Proux, Florence</creatorcontrib><creatorcontrib>Kolesnikova, Olga</creatorcontrib><creatorcontrib>Vinh, Joelle</creatorcontrib><creatorcontrib>Poterszman, Arnaud</creatorcontrib><creatorcontrib>Bensaude, Olivier</creatorcontrib><title>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.</description><subject>Amino acids</subject><subject>Binding sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Genes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Peptides</subject><subject>Proteins</subject><subject>RNA polymerase</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EokvhzAlkiQsc0npix44vSKtVyyKtVA7lxMFyHIf1krWD7azaf99EW1ra00h-37zxzEPoPZAzIIKeD16nM-BQUgoA9AVaAJFQcCbJS7QgpBRFzUp2gt6ktCOEyKomr9FJKYQEYGyBfi09tofQj9kFr-MtNsEnGw-2xWt74_aABztk11rcON8mnAPOW4tX7R-Jjc66v83O4OSynSXnt65xGf8ori8um7foVaf7ZN_d11P08_LierUuNlffvq-Wm8IwIXIBDZUtFZIR3RIwuqSaN8BlxVomRW0JByOl7HhNObMd1B1vKJSaNbQ1puP0FH09-g5js7etsT5H3ashuv20kQraqaeKd1v1OxxUNd1MkGoy-HI02D5rWy83an4jwKBitTjAxH6-HxbD39GmrPYuGdv32tswJgU1rXjNGJnRT8_QXRijn04xUYxwLoUUE3V-pEwMKUXbPfwAiJpDVnPI6jHkqePj__s-8P9SnYAPR2CXcoiPOmeipILTOxB9qxA</recordid><startdate>20161108</startdate><enddate>20161108</enddate><creator>Kobbi, Lydia</creator><creator>Demey-Thomas, Emmanuelle</creator><creator>Braye, Floriane</creator><creator>Proux, Florence</creator><creator>Kolesnikova, Olga</creator><creator>Vinh, Joelle</creator><creator>Poterszman, Arnaud</creator><creator>Bensaude, Olivier</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7184-2668</orcidid><orcidid>https://orcid.org/0000-0002-6702-5777</orcidid></search><sort><creationdate>20161108</creationdate><title>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</title><author>Kobbi, Lydia ; Demey-Thomas, Emmanuelle ; Braye, Floriane ; Proux, Florence ; Kolesnikova, Olga ; Vinh, Joelle ; Poterszman, Arnaud ; Bensaude, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino acids</topic><topic>Binding sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Genes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Peptides</topic><topic>Proteins</topic><topic>RNA polymerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobbi, Lydia</creatorcontrib><creatorcontrib>Demey-Thomas, Emmanuelle</creatorcontrib><creatorcontrib>Braye, Floriane</creatorcontrib><creatorcontrib>Proux, Florence</creatorcontrib><creatorcontrib>Kolesnikova, Olga</creatorcontrib><creatorcontrib>Vinh, Joelle</creatorcontrib><creatorcontrib>Poterszman, Arnaud</creatorcontrib><creatorcontrib>Bensaude, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobbi, Lydia</au><au>Demey-Thomas, Emmanuelle</au><au>Braye, Floriane</au><au>Proux, Florence</au><au>Kolesnikova, Olga</au><au>Vinh, Joelle</au><au>Poterszman, Arnaud</au><au>Bensaude, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-11-08</date><risdate>2016</risdate><volume>113</volume><issue>45</issue><spage>12721</spage><epage>12726</epage><pages>12721-12726</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the “PYNT” sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27791144</pmid><doi>10.1073/pnas.1612331113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7184-2668</orcidid><orcidid>https://orcid.org/0000-0002-6702-5777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (45), p.12721-12726
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111705
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Amino acids
Binding sites
Biochemistry, Molecular Biology
Biological Sciences
Genes
Genomics
Life Sciences
Peptides
Proteins
RNA polymerase
title An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary%20conserved%20Hexim1%20peptide%20binds%20to%20the%20Cdk9%20catalytic%20site%20to%20inhibit%20P-TEFb&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kobbi,%20Lydia&rft.date=2016-11-08&rft.volume=113&rft.issue=45&rft.spage=12721&rft.epage=12726&rft.pages=12721-12726&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1612331113&rft_dat=%3Cjstor_pubme%3E26472376%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-1b39d37940ad01ca23a6b16954d4978e061c999f68364ef18f6b312a4b3dccf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1840669797&rft_id=info:pmid/27791144&rft_jstor_id=26472376&rfr_iscdi=true