Loading…
A mobile genetic element profoundly increases heat resistance of bacterial spores
Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient...
Saved in:
Published in: | The ISME Journal 2016-11, Vol.10 (11), p.2633-2642 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03 |
container_end_page | 2642 |
container_issue | 11 |
container_start_page | 2633 |
container_title | The ISME Journal |
container_volume | 10 |
creator | Berendsen, Erwin M Boekhorst, Jos Kuipers, Oscar P Wells-Bennik, Marjon H J |
description | Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in
Bacillus subtilis,
this is due to the presence of a mobile genetic element (Tn
1546
-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named
spoVA
2mob
, confers high-level heat resistance to spores. Deletion of
spoVA
2mob
in a
B. subtilis
strain carrying Tn
1546
renders heat-sensitive spores while transfer of
spoVA
2mob
into
B. subtilis
168 yields highly heat-resistant spores. On the basis of the genetic conservation of different
spoVA
operons among spore-forming species of
Bacillaceae
, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in
B. subtilis
,
B. licheniformis
and
B. amyloliquefaciens
. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores. |
doi_str_mv | 10.1038/ismej.2016.59 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5113849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4226398161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</originalsourceid><addsrcrecordid>eNqNkc1LHTEUxUOxVGu77LYE3LiZZz4mH7MRRGorCFJo1yGTuXnmMZM8kxnB_74zPvuwxYWrGzg_zj03B6EvlKwo4foslAE2K0aoXInmHTqiStBKcUUO9m_JDtHHUjaECCWl-oAOmaJEEEWO0M8LPKQ29IDXEGEMDkMPA8QRb3PyaYpd_4hDdBlsgYLvwI44QwlltNEBTh631o2Qg-1x2aZZ-oTee9sX-Pw8j9Hvq2-_Ln9UN7ffry8vbipXazVWtXIN50xqXVPeOQbadXOktmXKy9aCtL72ttHS6kZr1wIVvpON6FxDwXvCj9H5znc7tQN0bs6cbW-2OQw2P5pkg_lXieHOrNODEZRyXTezwemzQU73E5TRDKE46HsbIU3FUM0VZ7pR_A0ok1ILRhb05D90k6Yc559YDKmSitd6pqod5XIqJYPf56bELL2ap17N0qsRS9avL4_d03-LnIHVDiizFNeQX6x91fEPBFmv9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831767348</pqid></control><display><type>article</type><title>A mobile genetic element profoundly increases heat resistance of bacterial spores</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Berendsen, Erwin M ; Boekhorst, Jos ; Kuipers, Oscar P ; Wells-Bennik, Marjon H J</creator><creatorcontrib>Berendsen, Erwin M ; Boekhorst, Jos ; Kuipers, Oscar P ; Wells-Bennik, Marjon H J</creatorcontrib><description>Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in
Bacillus subtilis,
this is due to the presence of a mobile genetic element (Tn
1546
-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named
spoVA
2mob
, confers high-level heat resistance to spores. Deletion of
spoVA
2mob
in a
B. subtilis
strain carrying Tn
1546
renders heat-sensitive spores while transfer of
spoVA
2mob
into
B. subtilis
168 yields highly heat-resistant spores. On the basis of the genetic conservation of different
spoVA
operons among spore-forming species of
Bacillaceae
, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in
B. subtilis
,
B. licheniformis
and
B. amyloliquefaciens
. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2016.59</identifier><identifier>PMID: 27105070</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/43 ; 45/70 ; 631/337 ; Bacillaceae ; Bacillus subtilis ; Bacillus subtilis - chemistry ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; DNA Transposable Elements ; Ecology ; Evolutionary Biology ; Heat resistance ; Hot Temperature ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Operon ; Original ; original-article ; Spores, Bacterial - chemistry ; Spores, Bacterial - genetics ; Spores, Bacterial - metabolism</subject><ispartof>The ISME Journal, 2016-11, Vol.10 (11), p.2633-2642</ispartof><rights>International Society for Microbial Ecology 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Copyright © 2016 International Society for Microbial Ecology 2016 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</citedby><cites>FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113849/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113849/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27105070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berendsen, Erwin M</creatorcontrib><creatorcontrib>Boekhorst, Jos</creatorcontrib><creatorcontrib>Kuipers, Oscar P</creatorcontrib><creatorcontrib>Wells-Bennik, Marjon H J</creatorcontrib><title>A mobile genetic element profoundly increases heat resistance of bacterial spores</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in
Bacillus subtilis,
this is due to the presence of a mobile genetic element (Tn
1546
-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named
spoVA
2mob
, confers high-level heat resistance to spores. Deletion of
spoVA
2mob
in a
B. subtilis
strain carrying Tn
1546
renders heat-sensitive spores while transfer of
spoVA
2mob
into
B. subtilis
168 yields highly heat-resistant spores. On the basis of the genetic conservation of different
spoVA
operons among spore-forming species of
Bacillaceae
, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in
B. subtilis
,
B. licheniformis
and
B. amyloliquefaciens
. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.</description><subject>45/43</subject><subject>45/70</subject><subject>631/337</subject><subject>Bacillaceae</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - chemistry</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>DNA Transposable Elements</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Heat resistance</subject><subject>Hot Temperature</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Operon</subject><subject>Original</subject><subject>original-article</subject><subject>Spores, Bacterial - chemistry</subject><subject>Spores, Bacterial - genetics</subject><subject>Spores, Bacterial - metabolism</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LHTEUxUOxVGu77LYE3LiZZz4mH7MRRGorCFJo1yGTuXnmMZM8kxnB_74zPvuwxYWrGzg_zj03B6EvlKwo4foslAE2K0aoXInmHTqiStBKcUUO9m_JDtHHUjaECCWl-oAOmaJEEEWO0M8LPKQ29IDXEGEMDkMPA8QRb3PyaYpd_4hDdBlsgYLvwI44QwlltNEBTh631o2Qg-1x2aZZ-oTee9sX-Pw8j9Hvq2-_Ln9UN7ffry8vbipXazVWtXIN50xqXVPeOQbadXOktmXKy9aCtL72ttHS6kZr1wIVvpON6FxDwXvCj9H5znc7tQN0bs6cbW-2OQw2P5pkg_lXieHOrNODEZRyXTezwemzQU73E5TRDKE46HsbIU3FUM0VZ7pR_A0ok1ILRhb05D90k6Yc559YDKmSitd6pqod5XIqJYPf56bELL2ap17N0qsRS9avL4_d03-LnIHVDiizFNeQX6x91fEPBFmv9Q</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Berendsen, Erwin M</creator><creator>Boekhorst, Jos</creator><creator>Kuipers, Oscar P</creator><creator>Wells-Bennik, Marjon H J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161101</creationdate><title>A mobile genetic element profoundly increases heat resistance of bacterial spores</title><author>Berendsen, Erwin M ; Boekhorst, Jos ; Kuipers, Oscar P ; Wells-Bennik, Marjon H J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/43</topic><topic>45/70</topic><topic>631/337</topic><topic>Bacillaceae</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - chemistry</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>DNA Transposable Elements</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Heat resistance</topic><topic>Hot Temperature</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Operon</topic><topic>Original</topic><topic>original-article</topic><topic>Spores, Bacterial - chemistry</topic><topic>Spores, Bacterial - genetics</topic><topic>Spores, Bacterial - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berendsen, Erwin M</creatorcontrib><creatorcontrib>Boekhorst, Jos</creatorcontrib><creatorcontrib>Kuipers, Oscar P</creatorcontrib><creatorcontrib>Wells-Bennik, Marjon H J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berendsen, Erwin M</au><au>Boekhorst, Jos</au><au>Kuipers, Oscar P</au><au>Wells-Bennik, Marjon H J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mobile genetic element profoundly increases heat resistance of bacterial spores</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>10</volume><issue>11</issue><spage>2633</spage><epage>2642</epage><pages>2633-2642</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in
Bacillus subtilis,
this is due to the presence of a mobile genetic element (Tn
1546
-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named
spoVA
2mob
, confers high-level heat resistance to spores. Deletion of
spoVA
2mob
in a
B. subtilis
strain carrying Tn
1546
renders heat-sensitive spores while transfer of
spoVA
2mob
into
B. subtilis
168 yields highly heat-resistant spores. On the basis of the genetic conservation of different
spoVA
operons among spore-forming species of
Bacillaceae
, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in
B. subtilis
,
B. licheniformis
and
B. amyloliquefaciens
. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27105070</pmid><doi>10.1038/ismej.2016.59</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2016-11, Vol.10 (11), p.2633-2642 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5113849 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | 45/43 45/70 631/337 Bacillaceae Bacillus subtilis Bacillus subtilis - chemistry Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biomedical and Life Sciences DNA Transposable Elements Ecology Evolutionary Biology Heat resistance Hot Temperature Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Operon Original original-article Spores, Bacterial - chemistry Spores, Bacterial - genetics Spores, Bacterial - metabolism |
title | A mobile genetic element profoundly increases heat resistance of bacterial spores |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mobile%20genetic%20element%20profoundly%20increases%20heat%20resistance%20of%20bacterial%20spores&rft.jtitle=The%20ISME%20Journal&rft.au=Berendsen,%20Erwin%20M&rft.date=2016-11-01&rft.volume=10&rft.issue=11&rft.spage=2633&rft.epage=2642&rft.pages=2633-2642&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2016.59&rft_dat=%3Cproquest_pubme%3E4226398161%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831767348&rft_id=info:pmid/27105070&rfr_iscdi=true |