Loading…

A mobile genetic element profoundly increases heat resistance of bacterial spores

Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient...

Full description

Saved in:
Bibliographic Details
Published in:The ISME Journal 2016-11, Vol.10 (11), p.2633-2642
Main Authors: Berendsen, Erwin M, Boekhorst, Jos, Kuipers, Oscar P, Wells-Bennik, Marjon H J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03
cites cdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03
container_end_page 2642
container_issue 11
container_start_page 2633
container_title The ISME Journal
container_volume 10
creator Berendsen, Erwin M
Boekhorst, Jos
Kuipers, Oscar P
Wells-Bennik, Marjon H J
description Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn 1546 -like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA 2mob , confers high-level heat resistance to spores. Deletion of spoVA 2mob in a B. subtilis strain carrying Tn 1546 renders heat-sensitive spores while transfer of spoVA 2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae , we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis , B. licheniformis and B. amyloliquefaciens . This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.
doi_str_mv 10.1038/ismej.2016.59
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5113849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4226398161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</originalsourceid><addsrcrecordid>eNqNkc1LHTEUxUOxVGu77LYE3LiZZz4mH7MRRGorCFJo1yGTuXnmMZM8kxnB_74zPvuwxYWrGzg_zj03B6EvlKwo4foslAE2K0aoXInmHTqiStBKcUUO9m_JDtHHUjaECCWl-oAOmaJEEEWO0M8LPKQ29IDXEGEMDkMPA8QRb3PyaYpd_4hDdBlsgYLvwI44QwlltNEBTh631o2Qg-1x2aZZ-oTee9sX-Pw8j9Hvq2-_Ln9UN7ffry8vbipXazVWtXIN50xqXVPeOQbadXOktmXKy9aCtL72ttHS6kZr1wIVvpON6FxDwXvCj9H5znc7tQN0bs6cbW-2OQw2P5pkg_lXieHOrNODEZRyXTezwemzQU73E5TRDKE46HsbIU3FUM0VZ7pR_A0ok1ILRhb05D90k6Yc559YDKmSitd6pqod5XIqJYPf56bELL2ap17N0qsRS9avL4_d03-LnIHVDiizFNeQX6x91fEPBFmv9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831767348</pqid></control><display><type>article</type><title>A mobile genetic element profoundly increases heat resistance of bacterial spores</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Berendsen, Erwin M ; Boekhorst, Jos ; Kuipers, Oscar P ; Wells-Bennik, Marjon H J</creator><creatorcontrib>Berendsen, Erwin M ; Boekhorst, Jos ; Kuipers, Oscar P ; Wells-Bennik, Marjon H J</creatorcontrib><description>Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn 1546 -like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA 2mob , confers high-level heat resistance to spores. Deletion of spoVA 2mob in a B. subtilis strain carrying Tn 1546 renders heat-sensitive spores while transfer of spoVA 2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae , we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis , B. licheniformis and B. amyloliquefaciens . This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2016.59</identifier><identifier>PMID: 27105070</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/43 ; 45/70 ; 631/337 ; Bacillaceae ; Bacillus subtilis ; Bacillus subtilis - chemistry ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; DNA Transposable Elements ; Ecology ; Evolutionary Biology ; Heat resistance ; Hot Temperature ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Operon ; Original ; original-article ; Spores, Bacterial - chemistry ; Spores, Bacterial - genetics ; Spores, Bacterial - metabolism</subject><ispartof>The ISME Journal, 2016-11, Vol.10 (11), p.2633-2642</ispartof><rights>International Society for Microbial Ecology 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Copyright © 2016 International Society for Microbial Ecology 2016 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</citedby><cites>FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113849/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113849/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27105070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berendsen, Erwin M</creatorcontrib><creatorcontrib>Boekhorst, Jos</creatorcontrib><creatorcontrib>Kuipers, Oscar P</creatorcontrib><creatorcontrib>Wells-Bennik, Marjon H J</creatorcontrib><title>A mobile genetic element profoundly increases heat resistance of bacterial spores</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn 1546 -like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA 2mob , confers high-level heat resistance to spores. Deletion of spoVA 2mob in a B. subtilis strain carrying Tn 1546 renders heat-sensitive spores while transfer of spoVA 2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae , we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis , B. licheniformis and B. amyloliquefaciens . This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.</description><subject>45/43</subject><subject>45/70</subject><subject>631/337</subject><subject>Bacillaceae</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - chemistry</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>DNA Transposable Elements</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Heat resistance</subject><subject>Hot Temperature</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Operon</subject><subject>Original</subject><subject>original-article</subject><subject>Spores, Bacterial - chemistry</subject><subject>Spores, Bacterial - genetics</subject><subject>Spores, Bacterial - metabolism</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LHTEUxUOxVGu77LYE3LiZZz4mH7MRRGorCFJo1yGTuXnmMZM8kxnB_74zPvuwxYWrGzg_zj03B6EvlKwo4foslAE2K0aoXInmHTqiStBKcUUO9m_JDtHHUjaECCWl-oAOmaJEEEWO0M8LPKQ29IDXEGEMDkMPA8QRb3PyaYpd_4hDdBlsgYLvwI44QwlltNEBTh631o2Qg-1x2aZZ-oTee9sX-Pw8j9Hvq2-_Ln9UN7ffry8vbipXazVWtXIN50xqXVPeOQbadXOktmXKy9aCtL72ttHS6kZr1wIVvpON6FxDwXvCj9H5znc7tQN0bs6cbW-2OQw2P5pkg_lXieHOrNODEZRyXTezwemzQU73E5TRDKE46HsbIU3FUM0VZ7pR_A0ok1ILRhb05D90k6Yc559YDKmSitd6pqod5XIqJYPf56bELL2ap17N0qsRS9avL4_d03-LnIHVDiizFNeQX6x91fEPBFmv9Q</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Berendsen, Erwin M</creator><creator>Boekhorst, Jos</creator><creator>Kuipers, Oscar P</creator><creator>Wells-Bennik, Marjon H J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161101</creationdate><title>A mobile genetic element profoundly increases heat resistance of bacterial spores</title><author>Berendsen, Erwin M ; Boekhorst, Jos ; Kuipers, Oscar P ; Wells-Bennik, Marjon H J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/43</topic><topic>45/70</topic><topic>631/337</topic><topic>Bacillaceae</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - chemistry</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>DNA Transposable Elements</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Heat resistance</topic><topic>Hot Temperature</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Operon</topic><topic>Original</topic><topic>original-article</topic><topic>Spores, Bacterial - chemistry</topic><topic>Spores, Bacterial - genetics</topic><topic>Spores, Bacterial - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berendsen, Erwin M</creatorcontrib><creatorcontrib>Boekhorst, Jos</creatorcontrib><creatorcontrib>Kuipers, Oscar P</creatorcontrib><creatorcontrib>Wells-Bennik, Marjon H J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berendsen, Erwin M</au><au>Boekhorst, Jos</au><au>Kuipers, Oscar P</au><au>Wells-Bennik, Marjon H J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mobile genetic element profoundly increases heat resistance of bacterial spores</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>10</volume><issue>11</issue><spage>2633</spage><epage>2642</epage><pages>2633-2642</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn 1546 -like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA 2mob , confers high-level heat resistance to spores. Deletion of spoVA 2mob in a B. subtilis strain carrying Tn 1546 renders heat-sensitive spores while transfer of spoVA 2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae , we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis , B. licheniformis and B. amyloliquefaciens . This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27105070</pmid><doi>10.1038/ismej.2016.59</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2016-11, Vol.10 (11), p.2633-2642
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5113849
source Oxford Journals Open Access Collection; PubMed Central
subjects 45/43
45/70
631/337
Bacillaceae
Bacillus subtilis
Bacillus subtilis - chemistry
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biomedical and Life Sciences
DNA Transposable Elements
Ecology
Evolutionary Biology
Heat resistance
Hot Temperature
Life Sciences
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Operon
Original
original-article
Spores, Bacterial - chemistry
Spores, Bacterial - genetics
Spores, Bacterial - metabolism
title A mobile genetic element profoundly increases heat resistance of bacterial spores
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mobile%20genetic%20element%20profoundly%20increases%20heat%20resistance%20of%20bacterial%20spores&rft.jtitle=The%20ISME%20Journal&rft.au=Berendsen,%20Erwin%20M&rft.date=2016-11-01&rft.volume=10&rft.issue=11&rft.spage=2633&rft.epage=2642&rft.pages=2633-2642&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2016.59&rft_dat=%3Cproquest_pubme%3E4226398161%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-47c9332688413dc2e8cd507bb27f6bae6af4fa986a8988cbe15fd695dc91eff03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831767348&rft_id=info:pmid/27105070&rfr_iscdi=true