Loading…

Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase

The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2016-11, Vol.291 (48), p.24804-24818
Main Authors: Kurth, Julia M., Brito, José A., Reuter, Jula, Flegler, Alexander, Koch, Tobias, Franke, Thomas, Klein, Eva-Maria, Rowe, Sam F., Butt, Julea N., Denkmann, Kevin, Pereira, Inês A.C., Archer, Margarida, Dahl, Christiane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3
cites cdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3
container_end_page 24818
container_issue 48
container_start_page 24804
container_title The Journal of biological chemistry
container_volume 291
creator Kurth, Julia M.
Brito, José A.
Reuter, Jula
Flegler, Alexander
Koch, Tobias
Franke, Thomas
Klein, Eva-Maria
Rowe, Sam F.
Butt, Julea N.
Denkmann, Kevin
Pereira, Inês A.C.
Archer, Margarida
Dahl, Christiane
description The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.
doi_str_mv 10.1074/jbc.M116.753863
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820345671</els_id><sourcerecordid>1835351199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</originalsourceid><addsrcrecordid>eNp1kc2P0zAQxS0EYsvCmRvykQNp7SRO7AtStywf0iIk1JW4Wc5k0niV2sV2Vip_Pa66rOCAL7Y8b96M3o-Q15wtOWvr1V0Hy6-cN8tWVLKpnpAFZ7IqKsF_PCULxkpeqFLIC_IixjuWT634c3JRto2q65ovyK_rCSEF7-gaAA_Juh29dTZF6geaRqQf7Ih7pJtj8jAGn59At7Ffv6OGXtlhdpCsd2ai29H6OE-DSbkJx2Mf_A6dibjaYgomjSdZrn3HfoaU_1-SZ4OZIr56uC_J7cfr7eZzcfPt05fN-qYAwVQqsGFd3RiuFOdYC4Ztw6ToZakEVrJquqFuay5haMEI0bdD2TKJslXQIVQKqkvy_ux7mLs99oAurzPpQ7B7E47aG6v_rTg76p2_14KXZc41G7x9MAj-54wx6b2NgNNkHPo5ai4rkRPPG2bp6iyF4GMMODyO4UyfiOlMTJ-I6TOx3PHm7-0e9X8QZYE6CzBndG8x6AgWHWBvQ0ane2__a_4bCySnpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835351199</pqid></control><display><type>article</type><title>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</title><source>PubMed Central Free</source><source>Elsevier ScienceDirect Journals</source><creator>Kurth, Julia M. ; Brito, José A. ; Reuter, Jula ; Flegler, Alexander ; Koch, Tobias ; Franke, Thomas ; Klein, Eva-Maria ; Rowe, Sam F. ; Butt, Julea N. ; Denkmann, Kevin ; Pereira, Inês A.C. ; Archer, Margarida ; Dahl, Christiane</creator><creatorcontrib>Kurth, Julia M. ; Brito, José A. ; Reuter, Jula ; Flegler, Alexander ; Koch, Tobias ; Franke, Thomas ; Klein, Eva-Maria ; Rowe, Sam F. ; Butt, Julea N. ; Denkmann, Kevin ; Pereira, Inês A.C. ; Archer, Margarida ; Dahl, Christiane</creatorcontrib><description>The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.753863</identifier><identifier>PMID: 27694441</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; crystal structure ; Crystallography, X-Ray ; cytochrome c ; electron acceptor ; enzyme kinetics ; heme ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Papers of the Week ; protein chemistry ; respiratory chain ; thiosulfate dehydrogenase ; TsdA</subject><ispartof>The Journal of biological chemistry, 2016-11, Vol.291 (48), p.24804-24818</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</citedby><cites>FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</cites><orcidid>0000-0001-8288-7546 ; 0000-0003-3283-4520 ; 0000-0002-9624-5226 ; 0000-0002-1221-1230 ; 0000-0001-8419-5420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122753/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820345671$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27694441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Brito, José A.</creatorcontrib><creatorcontrib>Reuter, Jula</creatorcontrib><creatorcontrib>Flegler, Alexander</creatorcontrib><creatorcontrib>Koch, Tobias</creatorcontrib><creatorcontrib>Franke, Thomas</creatorcontrib><creatorcontrib>Klein, Eva-Maria</creatorcontrib><creatorcontrib>Rowe, Sam F.</creatorcontrib><creatorcontrib>Butt, Julea N.</creatorcontrib><creatorcontrib>Denkmann, Kevin</creatorcontrib><creatorcontrib>Pereira, Inês A.C.</creatorcontrib><creatorcontrib>Archer, Margarida</creatorcontrib><creatorcontrib>Dahl, Christiane</creatorcontrib><title>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.</description><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>cytochrome c</subject><subject>electron acceptor</subject><subject>enzyme kinetics</subject><subject>heme</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Papers of the Week</subject><subject>protein chemistry</subject><subject>respiratory chain</subject><subject>thiosulfate dehydrogenase</subject><subject>TsdA</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc2P0zAQxS0EYsvCmRvykQNp7SRO7AtStywf0iIk1JW4Wc5k0niV2sV2Vip_Pa66rOCAL7Y8b96M3o-Q15wtOWvr1V0Hy6-cN8tWVLKpnpAFZ7IqKsF_PCULxkpeqFLIC_IixjuWT634c3JRto2q65ovyK_rCSEF7-gaAA_Juh29dTZF6geaRqQf7Ih7pJtj8jAGn59At7Ffv6OGXtlhdpCsd2ai29H6OE-DSbkJx2Mf_A6dibjaYgomjSdZrn3HfoaU_1-SZ4OZIr56uC_J7cfr7eZzcfPt05fN-qYAwVQqsGFd3RiuFOdYC4Ztw6ToZakEVrJquqFuay5haMEI0bdD2TKJslXQIVQKqkvy_ux7mLs99oAurzPpQ7B7E47aG6v_rTg76p2_14KXZc41G7x9MAj-54wx6b2NgNNkHPo5ai4rkRPPG2bp6iyF4GMMODyO4UyfiOlMTJ-I6TOx3PHm7-0e9X8QZYE6CzBndG8x6AgWHWBvQ0ane2__a_4bCySnpQ</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Kurth, Julia M.</creator><creator>Brito, José A.</creator><creator>Reuter, Jula</creator><creator>Flegler, Alexander</creator><creator>Koch, Tobias</creator><creator>Franke, Thomas</creator><creator>Klein, Eva-Maria</creator><creator>Rowe, Sam F.</creator><creator>Butt, Julea N.</creator><creator>Denkmann, Kevin</creator><creator>Pereira, Inês A.C.</creator><creator>Archer, Margarida</creator><creator>Dahl, Christiane</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8288-7546</orcidid><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0002-9624-5226</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0001-8419-5420</orcidid></search><sort><creationdate>20161125</creationdate><title>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</title><author>Kurth, Julia M. ; Brito, José A. ; Reuter, Jula ; Flegler, Alexander ; Koch, Tobias ; Franke, Thomas ; Klein, Eva-Maria ; Rowe, Sam F. ; Butt, Julea N. ; Denkmann, Kevin ; Pereira, Inês A.C. ; Archer, Margarida ; Dahl, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>cytochrome c</topic><topic>electron acceptor</topic><topic>enzyme kinetics</topic><topic>heme</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Papers of the Week</topic><topic>protein chemistry</topic><topic>respiratory chain</topic><topic>thiosulfate dehydrogenase</topic><topic>TsdA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Brito, José A.</creatorcontrib><creatorcontrib>Reuter, Jula</creatorcontrib><creatorcontrib>Flegler, Alexander</creatorcontrib><creatorcontrib>Koch, Tobias</creatorcontrib><creatorcontrib>Franke, Thomas</creatorcontrib><creatorcontrib>Klein, Eva-Maria</creatorcontrib><creatorcontrib>Rowe, Sam F.</creatorcontrib><creatorcontrib>Butt, Julea N.</creatorcontrib><creatorcontrib>Denkmann, Kevin</creatorcontrib><creatorcontrib>Pereira, Inês A.C.</creatorcontrib><creatorcontrib>Archer, Margarida</creatorcontrib><creatorcontrib>Dahl, Christiane</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurth, Julia M.</au><au>Brito, José A.</au><au>Reuter, Jula</au><au>Flegler, Alexander</au><au>Koch, Tobias</au><au>Franke, Thomas</au><au>Klein, Eva-Maria</au><au>Rowe, Sam F.</au><au>Butt, Julea N.</au><au>Denkmann, Kevin</au><au>Pereira, Inês A.C.</au><au>Archer, Margarida</au><au>Dahl, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-11-25</date><risdate>2016</risdate><volume>291</volume><issue>48</issue><spage>24804</spage><epage>24818</epage><pages>24804-24818</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27694441</pmid><doi>10.1074/jbc.M116.753863</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8288-7546</orcidid><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0002-9624-5226</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0001-8419-5420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-11, Vol.291 (48), p.24804-24818
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122753
source PubMed Central Free; Elsevier ScienceDirect Journals
subjects Bacteria - enzymology
Bacteria - genetics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
crystal structure
Crystallography, X-Ray
cytochrome c
electron acceptor
enzyme kinetics
heme
Oxidoreductases - chemistry
Oxidoreductases - genetics
Papers of the Week
protein chemistry
respiratory chain
thiosulfate dehydrogenase
TsdA
title Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Accepting%20Units%20of%20the%20Diheme%20Cytochrome%20c%20TsdA,%20a%20Bifunctional%20Thiosulfate%20Dehydrogenase/Tetrathionate%20Reductase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kurth,%20Julia%20M.&rft.date=2016-11-25&rft.volume=291&rft.issue=48&rft.spage=24804&rft.epage=24818&rft.pages=24804-24818&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.753863&rft_dat=%3Cproquest_pubme%3E1835351199%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835351199&rft_id=info:pmid/27694441&rfr_iscdi=true