Loading…
Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase
The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas...
Saved in:
Published in: | The Journal of biological chemistry 2016-11, Vol.291 (48), p.24804-24818 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3 |
container_end_page | 24818 |
container_issue | 48 |
container_start_page | 24804 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Kurth, Julia M. Brito, José A. Reuter, Jula Flegler, Alexander Koch, Tobias Franke, Thomas Klein, Eva-Maria Rowe, Sam F. Butt, Julea N. Denkmann, Kevin Pereira, Inês A.C. Archer, Margarida Dahl, Christiane |
description | The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains. |
doi_str_mv | 10.1074/jbc.M116.753863 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820345671</els_id><sourcerecordid>1835351199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</originalsourceid><addsrcrecordid>eNp1kc2P0zAQxS0EYsvCmRvykQNp7SRO7AtStywf0iIk1JW4Wc5k0niV2sV2Vip_Pa66rOCAL7Y8b96M3o-Q15wtOWvr1V0Hy6-cN8tWVLKpnpAFZ7IqKsF_PCULxkpeqFLIC_IixjuWT634c3JRto2q65ovyK_rCSEF7-gaAA_Juh29dTZF6geaRqQf7Ih7pJtj8jAGn59At7Ffv6OGXtlhdpCsd2ai29H6OE-DSbkJx2Mf_A6dibjaYgomjSdZrn3HfoaU_1-SZ4OZIr56uC_J7cfr7eZzcfPt05fN-qYAwVQqsGFd3RiuFOdYC4Ztw6ToZakEVrJquqFuay5haMEI0bdD2TKJslXQIVQKqkvy_ux7mLs99oAurzPpQ7B7E47aG6v_rTg76p2_14KXZc41G7x9MAj-54wx6b2NgNNkHPo5ai4rkRPPG2bp6iyF4GMMODyO4UyfiOlMTJ-I6TOx3PHm7-0e9X8QZYE6CzBndG8x6AgWHWBvQ0ane2__a_4bCySnpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835351199</pqid></control><display><type>article</type><title>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</title><source>PubMed Central Free</source><source>Elsevier ScienceDirect Journals</source><creator>Kurth, Julia M. ; Brito, José A. ; Reuter, Jula ; Flegler, Alexander ; Koch, Tobias ; Franke, Thomas ; Klein, Eva-Maria ; Rowe, Sam F. ; Butt, Julea N. ; Denkmann, Kevin ; Pereira, Inês A.C. ; Archer, Margarida ; Dahl, Christiane</creator><creatorcontrib>Kurth, Julia M. ; Brito, José A. ; Reuter, Jula ; Flegler, Alexander ; Koch, Tobias ; Franke, Thomas ; Klein, Eva-Maria ; Rowe, Sam F. ; Butt, Julea N. ; Denkmann, Kevin ; Pereira, Inês A.C. ; Archer, Margarida ; Dahl, Christiane</creatorcontrib><description>The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.753863</identifier><identifier>PMID: 27694441</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; crystal structure ; Crystallography, X-Ray ; cytochrome c ; electron acceptor ; enzyme kinetics ; heme ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Papers of the Week ; protein chemistry ; respiratory chain ; thiosulfate dehydrogenase ; TsdA</subject><ispartof>The Journal of biological chemistry, 2016-11, Vol.291 (48), p.24804-24818</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</citedby><cites>FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</cites><orcidid>0000-0001-8288-7546 ; 0000-0003-3283-4520 ; 0000-0002-9624-5226 ; 0000-0002-1221-1230 ; 0000-0001-8419-5420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122753/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820345671$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27694441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Brito, José A.</creatorcontrib><creatorcontrib>Reuter, Jula</creatorcontrib><creatorcontrib>Flegler, Alexander</creatorcontrib><creatorcontrib>Koch, Tobias</creatorcontrib><creatorcontrib>Franke, Thomas</creatorcontrib><creatorcontrib>Klein, Eva-Maria</creatorcontrib><creatorcontrib>Rowe, Sam F.</creatorcontrib><creatorcontrib>Butt, Julea N.</creatorcontrib><creatorcontrib>Denkmann, Kevin</creatorcontrib><creatorcontrib>Pereira, Inês A.C.</creatorcontrib><creatorcontrib>Archer, Margarida</creatorcontrib><creatorcontrib>Dahl, Christiane</creatorcontrib><title>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.</description><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>cytochrome c</subject><subject>electron acceptor</subject><subject>enzyme kinetics</subject><subject>heme</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Papers of the Week</subject><subject>protein chemistry</subject><subject>respiratory chain</subject><subject>thiosulfate dehydrogenase</subject><subject>TsdA</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc2P0zAQxS0EYsvCmRvykQNp7SRO7AtStywf0iIk1JW4Wc5k0niV2sV2Vip_Pa66rOCAL7Y8b96M3o-Q15wtOWvr1V0Hy6-cN8tWVLKpnpAFZ7IqKsF_PCULxkpeqFLIC_IixjuWT634c3JRto2q65ovyK_rCSEF7-gaAA_Juh29dTZF6geaRqQf7Ih7pJtj8jAGn59At7Ffv6OGXtlhdpCsd2ai29H6OE-DSbkJx2Mf_A6dibjaYgomjSdZrn3HfoaU_1-SZ4OZIr56uC_J7cfr7eZzcfPt05fN-qYAwVQqsGFd3RiuFOdYC4Ztw6ToZakEVrJquqFuay5haMEI0bdD2TKJslXQIVQKqkvy_ux7mLs99oAurzPpQ7B7E47aG6v_rTg76p2_14KXZc41G7x9MAj-54wx6b2NgNNkHPo5ai4rkRPPG2bp6iyF4GMMODyO4UyfiOlMTJ-I6TOx3PHm7-0e9X8QZYE6CzBndG8x6AgWHWBvQ0ane2__a_4bCySnpQ</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Kurth, Julia M.</creator><creator>Brito, José A.</creator><creator>Reuter, Jula</creator><creator>Flegler, Alexander</creator><creator>Koch, Tobias</creator><creator>Franke, Thomas</creator><creator>Klein, Eva-Maria</creator><creator>Rowe, Sam F.</creator><creator>Butt, Julea N.</creator><creator>Denkmann, Kevin</creator><creator>Pereira, Inês A.C.</creator><creator>Archer, Margarida</creator><creator>Dahl, Christiane</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8288-7546</orcidid><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0002-9624-5226</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0001-8419-5420</orcidid></search><sort><creationdate>20161125</creationdate><title>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</title><author>Kurth, Julia M. ; Brito, José A. ; Reuter, Jula ; Flegler, Alexander ; Koch, Tobias ; Franke, Thomas ; Klein, Eva-Maria ; Rowe, Sam F. ; Butt, Julea N. ; Denkmann, Kevin ; Pereira, Inês A.C. ; Archer, Margarida ; Dahl, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>cytochrome c</topic><topic>electron acceptor</topic><topic>enzyme kinetics</topic><topic>heme</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Papers of the Week</topic><topic>protein chemistry</topic><topic>respiratory chain</topic><topic>thiosulfate dehydrogenase</topic><topic>TsdA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurth, Julia M.</creatorcontrib><creatorcontrib>Brito, José A.</creatorcontrib><creatorcontrib>Reuter, Jula</creatorcontrib><creatorcontrib>Flegler, Alexander</creatorcontrib><creatorcontrib>Koch, Tobias</creatorcontrib><creatorcontrib>Franke, Thomas</creatorcontrib><creatorcontrib>Klein, Eva-Maria</creatorcontrib><creatorcontrib>Rowe, Sam F.</creatorcontrib><creatorcontrib>Butt, Julea N.</creatorcontrib><creatorcontrib>Denkmann, Kevin</creatorcontrib><creatorcontrib>Pereira, Inês A.C.</creatorcontrib><creatorcontrib>Archer, Margarida</creatorcontrib><creatorcontrib>Dahl, Christiane</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurth, Julia M.</au><au>Brito, José A.</au><au>Reuter, Jula</au><au>Flegler, Alexander</au><au>Koch, Tobias</au><au>Franke, Thomas</au><au>Klein, Eva-Maria</au><au>Rowe, Sam F.</au><au>Butt, Julea N.</au><au>Denkmann, Kevin</au><au>Pereira, Inês A.C.</au><au>Archer, Margarida</au><au>Dahl, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-11-25</date><risdate>2016</risdate><volume>291</volume><issue>48</issue><spage>24804</spage><epage>24818</epage><pages>24804-24818</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from −300 to +150 mV, TsdB is redox active between −100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27694441</pmid><doi>10.1074/jbc.M116.753863</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8288-7546</orcidid><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0002-9624-5226</orcidid><orcidid>https://orcid.org/0000-0002-1221-1230</orcidid><orcidid>https://orcid.org/0000-0001-8419-5420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-11, Vol.291 (48), p.24804-24818 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122753 |
source | PubMed Central Free; Elsevier ScienceDirect Journals |
subjects | Bacteria - enzymology Bacteria - genetics Bacterial Proteins - chemistry Bacterial Proteins - genetics crystal structure Crystallography, X-Ray cytochrome c electron acceptor enzyme kinetics heme Oxidoreductases - chemistry Oxidoreductases - genetics Papers of the Week protein chemistry respiratory chain thiosulfate dehydrogenase TsdA |
title | Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Accepting%20Units%20of%20the%20Diheme%20Cytochrome%20c%20TsdA,%20a%20Bifunctional%20Thiosulfate%20Dehydrogenase/Tetrathionate%20Reductase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kurth,%20Julia%20M.&rft.date=2016-11-25&rft.volume=291&rft.issue=48&rft.spage=24804&rft.epage=24818&rft.pages=24804-24818&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.753863&rft_dat=%3Cproquest_pubme%3E1835351199%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-e60b46a19911e450e76085d8295e3836bf47418cf7ca55d7f2708e879cbec39c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835351199&rft_id=info:pmid/27694441&rfr_iscdi=true |