Loading…

Arrangement at the nanoscale: Effect on magnetic particle hyperthermia

In this work, we present the arrangement of Fe 3 O 4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 an...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-11, Vol.6 (1), p.37934-37934, Article 37934
Main Authors: Myrovali, E., Maniotis, N., Makridis, A., Terzopoulou, A., Ntomprougkidis, V., Simeonidis, K., Sakellari, D., Kalogirou, O., Samaras, T., Salikhov, R., Spasova, M., Farle, M., Wiedwald, U., Angelakeris, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-cec63602df95edfd38f8c27e58d48ab9ae6329b05add7aa7172c42a5b6c0b793
cites cdi_FETCH-LOGICAL-c504t-cec63602df95edfd38f8c27e58d48ab9ae6329b05add7aa7172c42a5b6c0b793
container_end_page 37934
container_issue 1
container_start_page 37934
container_title Scientific reports
container_volume 6
creator Myrovali, E.
Maniotis, N.
Makridis, A.
Terzopoulou, A.
Ntomprougkidis, V.
Simeonidis, K.
Sakellari, D.
Kalogirou, O.
Samaras, T.
Salikhov, R.
Spasova, M.
Farle, M.
Wiedwald, U.
Angelakeris, M.
description In this work, we present the arrangement of Fe 3 O 4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.
doi_str_mv 10.1038/srep37934
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5126575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844604098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-cec63602df95edfd38f8c27e58d48ab9ae6329b05add7aa7172c42a5b6c0b793</originalsourceid><addsrcrecordid>eNplkU9Lw0AQxRdRrKgHv4AEvKgQ3Wx2N1kPQin1Dwheel8mm0mbkmzibir027vSWqrOZQbmx5s3PEIuEnqX0DS_9w77NFMpPyAnjHIRs5Sxw715RM69X9JQgimeqGMyYlmuskSJE_I0dg7sHFu0QwRDNCwwsmA7b6DBh2haVWiGqLNRC3OLQ22iHlxoDUaLdY8u8K6t4YwcVdB4PN_2UzJ7ms4mL_Hb-_PrZPwWG0H5EBs0MpWUlZUSWFZlmle5YRmKvOQ5FApQpkwVVEBZZgBZkjHDGYhCGlqEH0_J40a2XxUtliaYdtDo3tUtuLXuoNa_N7Ze6Hn3qUXCpMhEELjeCrjuY4V-0G3tDTYNWOxWXic555JyqvKAXv1Bl93K2fBdoJRKJZNcBupmQxnX-RBFtTOTUP2dj97lE9jLffc78ieNANxuAB9WIRS3d_Kf2hfn0JrD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899362646</pqid></control><display><type>article</type><title>Arrangement at the nanoscale: Effect on magnetic particle hyperthermia</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Myrovali, E. ; Maniotis, N. ; Makridis, A. ; Terzopoulou, A. ; Ntomprougkidis, V. ; Simeonidis, K. ; Sakellari, D. ; Kalogirou, O. ; Samaras, T. ; Salikhov, R. ; Spasova, M. ; Farle, M. ; Wiedwald, U. ; Angelakeris, M.</creator><creatorcontrib>Myrovali, E. ; Maniotis, N. ; Makridis, A. ; Terzopoulou, A. ; Ntomprougkidis, V. ; Simeonidis, K. ; Sakellari, D. ; Kalogirou, O. ; Samaras, T. ; Salikhov, R. ; Spasova, M. ; Farle, M. ; Wiedwald, U. ; Angelakeris, M.</creatorcontrib><description>In this work, we present the arrangement of Fe 3 O 4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep37934</identifier><identifier>PMID: 27897195</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/997 ; 639/925/930/12 ; Anisotropy ; Diffusion models ; Efficiency ; Electron microscopy ; Fever ; Hot Temperature ; Humanities and Social Sciences ; Hyperthermia ; Magnetic fields ; Magnetic Phenomena ; Magnetite ; Magnetite Nanoparticles - chemistry ; Models, Theoretical ; multidisciplinary ; Nanoparticles ; Scanning electron microscopy ; Science ; Temperature effects</subject><ispartof>Scientific reports, 2016-11, Vol.6 (1), p.37934-37934, Article 37934</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-cec63602df95edfd38f8c27e58d48ab9ae6329b05add7aa7172c42a5b6c0b793</citedby><cites>FETCH-LOGICAL-c504t-cec63602df95edfd38f8c27e58d48ab9ae6329b05add7aa7172c42a5b6c0b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899362646/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899362646?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27897195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Myrovali, E.</creatorcontrib><creatorcontrib>Maniotis, N.</creatorcontrib><creatorcontrib>Makridis, A.</creatorcontrib><creatorcontrib>Terzopoulou, A.</creatorcontrib><creatorcontrib>Ntomprougkidis, V.</creatorcontrib><creatorcontrib>Simeonidis, K.</creatorcontrib><creatorcontrib>Sakellari, D.</creatorcontrib><creatorcontrib>Kalogirou, O.</creatorcontrib><creatorcontrib>Samaras, T.</creatorcontrib><creatorcontrib>Salikhov, R.</creatorcontrib><creatorcontrib>Spasova, M.</creatorcontrib><creatorcontrib>Farle, M.</creatorcontrib><creatorcontrib>Wiedwald, U.</creatorcontrib><creatorcontrib>Angelakeris, M.</creatorcontrib><title>Arrangement at the nanoscale: Effect on magnetic particle hyperthermia</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this work, we present the arrangement of Fe 3 O 4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.</description><subject>639/925/357/997</subject><subject>639/925/930/12</subject><subject>Anisotropy</subject><subject>Diffusion models</subject><subject>Efficiency</subject><subject>Electron microscopy</subject><subject>Fever</subject><subject>Hot Temperature</subject><subject>Humanities and Social Sciences</subject><subject>Hyperthermia</subject><subject>Magnetic fields</subject><subject>Magnetic Phenomena</subject><subject>Magnetite</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkU9Lw0AQxRdRrKgHv4AEvKgQ3Wx2N1kPQin1Dwheel8mm0mbkmzibir027vSWqrOZQbmx5s3PEIuEnqX0DS_9w77NFMpPyAnjHIRs5Sxw715RM69X9JQgimeqGMyYlmuskSJE_I0dg7sHFu0QwRDNCwwsmA7b6DBh2haVWiGqLNRC3OLQ22iHlxoDUaLdY8u8K6t4YwcVdB4PN_2UzJ7ms4mL_Hb-_PrZPwWG0H5EBs0MpWUlZUSWFZlmle5YRmKvOQ5FApQpkwVVEBZZgBZkjHDGYhCGlqEH0_J40a2XxUtliaYdtDo3tUtuLXuoNa_N7Ze6Hn3qUXCpMhEELjeCrjuY4V-0G3tDTYNWOxWXic555JyqvKAXv1Bl93K2fBdoJRKJZNcBupmQxnX-RBFtTOTUP2dj97lE9jLffc78ieNANxuAB9WIRS3d_Kf2hfn0JrD</recordid><startdate>20161129</startdate><enddate>20161129</enddate><creator>Myrovali, E.</creator><creator>Maniotis, N.</creator><creator>Makridis, A.</creator><creator>Terzopoulou, A.</creator><creator>Ntomprougkidis, V.</creator><creator>Simeonidis, K.</creator><creator>Sakellari, D.</creator><creator>Kalogirou, O.</creator><creator>Samaras, T.</creator><creator>Salikhov, R.</creator><creator>Spasova, M.</creator><creator>Farle, M.</creator><creator>Wiedwald, U.</creator><creator>Angelakeris, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161129</creationdate><title>Arrangement at the nanoscale: Effect on magnetic particle hyperthermia</title><author>Myrovali, E. ; Maniotis, N. ; Makridis, A. ; Terzopoulou, A. ; Ntomprougkidis, V. ; Simeonidis, K. ; Sakellari, D. ; Kalogirou, O. ; Samaras, T. ; Salikhov, R. ; Spasova, M. ; Farle, M. ; Wiedwald, U. ; Angelakeris, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-cec63602df95edfd38f8c27e58d48ab9ae6329b05add7aa7172c42a5b6c0b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/925/357/997</topic><topic>639/925/930/12</topic><topic>Anisotropy</topic><topic>Diffusion models</topic><topic>Efficiency</topic><topic>Electron microscopy</topic><topic>Fever</topic><topic>Hot Temperature</topic><topic>Humanities and Social Sciences</topic><topic>Hyperthermia</topic><topic>Magnetic fields</topic><topic>Magnetic Phenomena</topic><topic>Magnetite</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myrovali, E.</creatorcontrib><creatorcontrib>Maniotis, N.</creatorcontrib><creatorcontrib>Makridis, A.</creatorcontrib><creatorcontrib>Terzopoulou, A.</creatorcontrib><creatorcontrib>Ntomprougkidis, V.</creatorcontrib><creatorcontrib>Simeonidis, K.</creatorcontrib><creatorcontrib>Sakellari, D.</creatorcontrib><creatorcontrib>Kalogirou, O.</creatorcontrib><creatorcontrib>Samaras, T.</creatorcontrib><creatorcontrib>Salikhov, R.</creatorcontrib><creatorcontrib>Spasova, M.</creatorcontrib><creatorcontrib>Farle, M.</creatorcontrib><creatorcontrib>Wiedwald, U.</creatorcontrib><creatorcontrib>Angelakeris, M.</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myrovali, E.</au><au>Maniotis, N.</au><au>Makridis, A.</au><au>Terzopoulou, A.</au><au>Ntomprougkidis, V.</au><au>Simeonidis, K.</au><au>Sakellari, D.</au><au>Kalogirou, O.</au><au>Samaras, T.</au><au>Salikhov, R.</au><au>Spasova, M.</au><au>Farle, M.</au><au>Wiedwald, U.</au><au>Angelakeris, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arrangement at the nanoscale: Effect on magnetic particle hyperthermia</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-11-29</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>37934</spage><epage>37934</epage><pages>37934-37934</pages><artnum>37934</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this work, we present the arrangement of Fe 3 O 4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27897195</pmid><doi>10.1038/srep37934</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-11, Vol.6 (1), p.37934-37934, Article 37934
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5126575
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/925/357/997
639/925/930/12
Anisotropy
Diffusion models
Efficiency
Electron microscopy
Fever
Hot Temperature
Humanities and Social Sciences
Hyperthermia
Magnetic fields
Magnetic Phenomena
Magnetite
Magnetite Nanoparticles - chemistry
Models, Theoretical
multidisciplinary
Nanoparticles
Scanning electron microscopy
Science
Temperature effects
title Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arrangement%20at%20the%20nanoscale:%20Effect%20on%20magnetic%20particle%20hyperthermia&rft.jtitle=Scientific%20reports&rft.au=Myrovali,%20E.&rft.date=2016-11-29&rft.volume=6&rft.issue=1&rft.spage=37934&rft.epage=37934&rft.pages=37934-37934&rft.artnum=37934&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep37934&rft_dat=%3Cproquest_pubme%3E1844604098%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-cec63602df95edfd38f8c27e58d48ab9ae6329b05add7aa7172c42a5b6c0b793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899362646&rft_id=info:pmid/27897195&rfr_iscdi=true