Loading…
Unified rheology of vibro-fluidized dry granular media: From slow dense flows to fast gas-like regimes
Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario w...
Saved in:
Published in: | Scientific reports 2016-12, Vol.6 (1), p.38604-38604, Article 38604 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario where average stress sums up a frictional contribution, generalizing conventional
μ(I
)-rheology, and a kinetic collisional term dominating at fast fluidization. Our conjecture fairly describes a wide series of experiments in a vibrofluidized vane setup, whose phenomenology includes velocity weakening, shear thinning, a discontinuous thinning transition, and gaseous shear thickening. The employed setup gives access to dynamic fluctuations, which exhibit a broad range of timescales. In the slow dense regime the frequency of cage-opening increases with stress and enhances, with respect to
μ(I
)-rheology, the decrease of viscosity. Diffusivity is exponential in the shear stress in both thinning and thickening regimes, with a huge growth near the transition. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep38604 |