Loading…

Translating microfluidics: Cell separation technologies and their barriers to commercialization

Advances in microfluidic cell sorting have revolutionized the ways in which cell‐containing fluids are processed, now providing performances comparable to, or exceeding, traditional systems, but in a vastly miniaturized format. These technologies exploit a wide variety of physical phenomena to manip...

Full description

Saved in:
Bibliographic Details
Published in:Cytometry. Part B, Clinical cytometry Clinical cytometry, 2017-03, Vol.92 (2), p.115-125
Main Authors: Shields, C. Wyatt, Ohiri, Korine A., Szott, Luisa M., López, Gabriel P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Advances in microfluidic cell sorting have revolutionized the ways in which cell‐containing fluids are processed, now providing performances comparable to, or exceeding, traditional systems, but in a vastly miniaturized format. These technologies exploit a wide variety of physical phenomena to manipulate cells and fluid flow, such as magnetic traps, sound waves and flow‐altering micropatterns, and they can evaluate single cells by immobilizing them onto surfaces for chemotherapeutic assessment, encapsulate cells into picoliter droplets for toxicity screenings and examine the interactions between pairs of cells in response to new, experimental drugs. However, despite the massive surge of innovation in these high‐performance lab‐on‐a‐chip devices, few have undergone successful commercialization, and no device has been translated to a widely distributed clinical commodity to date. Persistent challenges such as an increasingly saturated patent landscape as well as complex user interfaces are among several factors that may contribute to their slowed progress. In this article, we identify several of the leading microfluidic technologies for sorting cells that are poised for clinical translation; we examine the principal barriers preventing their routine clinical use; finally, we provide a prospectus to elucidate the key criteria that must be met to overcome those barriers. Once established, these tools may soon transform how clinical labs study various ailments and diseases by separating cells for downstream sequencing and enabling other forms of advanced cellular or sub‐cellular analysis. © 2016 International Clinical Cytometry Society
ISSN:1552-4949
1552-4957
DOI:10.1002/cyto.b.21388