Loading…

An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis

The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynami...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2016-12, Vol.291 (51), p.26304-26319
Main Authors: Kayode, Olumide, Wang, Ruiying, Pendlebury, Devon F., Cohen, Itay, Henin, Rachel D., Hockla, Alexandra, Soares, Alexei S., Papo, Niv, Caulfield, Thomas R., Radisky, Evette S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563
cites cdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563
container_end_page 26319
container_issue 51
container_start_page 26304
container_title The Journal of biological chemistry
container_volume 291
creator Kayode, Olumide
Wang, Ruiying
Pendlebury, Devon F.
Cohen, Itay
Henin, Rachel D.
Hockla, Alexandra
Soares, Alexei S.
Papo, Niv
Caulfield, Thomas R.
Radisky, Evette S.
description The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.
doi_str_mv 10.1074/jbc.M116.758417
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5159493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820344537</els_id><sourcerecordid>1836733996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhS0EokNhzQ5FrNhkaseveIM0Gp5SKxAUiZ3lODeMq8Se2s6g-fd4lFKVBd5cyz738_E9CL0keE2wZBc3nV1fESLWkreMyEdoRXBLa8rJz8dohXFDatXw9gw9S-kGl8UUeYrOGtkWnRIr9Hvjq42NoTPZ2er73KUcTYbqCrKZQtzvQnKp-gYHMGOqTNndzi7CBD5XQ4gPOrbBl4OpcII3Y_Xu6M3kbKqcr67jcZ9K_RpDhjAeC_I5ejIUIry4q-fox4f319tP9eWXj5-3m8vaMolzrbgaFB7EoIzsrRhaIRsiDAVQinKOWyItZx3YnrMGhKKSCdI2gtmuJZYLeo7eLtz93E3Q2-I7mlHvo5tMPOpgnP73xrud_hUOmhOumKIF8HoBhJSdTtZlsDsbvAebNSmDlg0rojd3r8RwO0PKenLJwjgaD2FOmrRUSEqVOhm6WKRl6ClFGO69EKxPmeqSqT5lqpdMS8erh1-41_8NsQjUIoAyyIODeLIJ3kJfkiou--D-C_8DuK6zHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836733996</pqid></control><display><type>article</type><title>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Kayode, Olumide ; Wang, Ruiying ; Pendlebury, Devon F. ; Cohen, Itay ; Henin, Rachel D. ; Hockla, Alexandra ; Soares, Alexei S. ; Papo, Niv ; Caulfield, Thomas R. ; Radisky, Evette S.</creator><creatorcontrib>Kayode, Olumide ; Wang, Ruiying ; Pendlebury, Devon F. ; Cohen, Itay ; Henin, Rachel D. ; Hockla, Alexandra ; Soares, Alexei S. ; Papo, Niv ; Caulfield, Thomas R. ; Radisky, Evette S. ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.758417</identifier><identifier>PMID: 27810896</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Aprotinin - chemistry ; BASIC BIOLOGICAL SCIENCES ; Catalysis ; Cattle ; crystal structure ; Crystallography, X-Ray ; enzyme catalysis ; Enzymology ; molecular dynamics ; Molecular Dynamics Simulation ; molecular modeling ; protease inhibitor ; protein conformation ; Protein Domains ; Protein dynamic ; protein structure ; Proteolysis ; serine protease ; Trypsin - chemistry</subject><ispartof>The Journal of biological chemistry, 2016-12, Vol.291 (51), p.26304-26319</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</citedby><cites>FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159493/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820344537$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27810896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1351724$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayode, Olumide</creatorcontrib><creatorcontrib>Wang, Ruiying</creatorcontrib><creatorcontrib>Pendlebury, Devon F.</creatorcontrib><creatorcontrib>Cohen, Itay</creatorcontrib><creatorcontrib>Henin, Rachel D.</creatorcontrib><creatorcontrib>Hockla, Alexandra</creatorcontrib><creatorcontrib>Soares, Alexei S.</creatorcontrib><creatorcontrib>Papo, Niv</creatorcontrib><creatorcontrib>Caulfield, Thomas R.</creatorcontrib><creatorcontrib>Radisky, Evette S.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.</description><subject>Animals</subject><subject>Aprotinin - chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Catalysis</subject><subject>Cattle</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>enzyme catalysis</subject><subject>Enzymology</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular modeling</subject><subject>protease inhibitor</subject><subject>protein conformation</subject><subject>Protein Domains</subject><subject>Protein dynamic</subject><subject>protein structure</subject><subject>Proteolysis</subject><subject>serine protease</subject><subject>Trypsin - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtv1DAUhS0EokNhzQ5FrNhkaseveIM0Gp5SKxAUiZ3lODeMq8Se2s6g-fd4lFKVBd5cyz738_E9CL0keE2wZBc3nV1fESLWkreMyEdoRXBLa8rJz8dohXFDatXw9gw9S-kGl8UUeYrOGtkWnRIr9Hvjq42NoTPZ2er73KUcTYbqCrKZQtzvQnKp-gYHMGOqTNndzi7CBD5XQ4gPOrbBl4OpcII3Y_Xu6M3kbKqcr67jcZ9K_RpDhjAeC_I5ejIUIry4q-fox4f319tP9eWXj5-3m8vaMolzrbgaFB7EoIzsrRhaIRsiDAVQinKOWyItZx3YnrMGhKKSCdI2gtmuJZYLeo7eLtz93E3Q2-I7mlHvo5tMPOpgnP73xrud_hUOmhOumKIF8HoBhJSdTtZlsDsbvAebNSmDlg0rojd3r8RwO0PKenLJwjgaD2FOmrRUSEqVOhm6WKRl6ClFGO69EKxPmeqSqT5lqpdMS8erh1-41_8NsQjUIoAyyIODeLIJ3kJfkiou--D-C_8DuK6zHg</recordid><startdate>20161216</startdate><enddate>20161216</enddate><creator>Kayode, Olumide</creator><creator>Wang, Ruiying</creator><creator>Pendlebury, Devon F.</creator><creator>Cohen, Itay</creator><creator>Henin, Rachel D.</creator><creator>Hockla, Alexandra</creator><creator>Soares, Alexei S.</creator><creator>Papo, Niv</creator><creator>Caulfield, Thomas R.</creator><creator>Radisky, Evette S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161216</creationdate><title>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</title><author>Kayode, Olumide ; Wang, Ruiying ; Pendlebury, Devon F. ; Cohen, Itay ; Henin, Rachel D. ; Hockla, Alexandra ; Soares, Alexei S. ; Papo, Niv ; Caulfield, Thomas R. ; Radisky, Evette S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aprotinin - chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Catalysis</topic><topic>Cattle</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>enzyme catalysis</topic><topic>Enzymology</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular modeling</topic><topic>protease inhibitor</topic><topic>protein conformation</topic><topic>Protein Domains</topic><topic>Protein dynamic</topic><topic>protein structure</topic><topic>Proteolysis</topic><topic>serine protease</topic><topic>Trypsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayode, Olumide</creatorcontrib><creatorcontrib>Wang, Ruiying</creatorcontrib><creatorcontrib>Pendlebury, Devon F.</creatorcontrib><creatorcontrib>Cohen, Itay</creatorcontrib><creatorcontrib>Henin, Rachel D.</creatorcontrib><creatorcontrib>Hockla, Alexandra</creatorcontrib><creatorcontrib>Soares, Alexei S.</creatorcontrib><creatorcontrib>Papo, Niv</creatorcontrib><creatorcontrib>Caulfield, Thomas R.</creatorcontrib><creatorcontrib>Radisky, Evette S.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayode, Olumide</au><au>Wang, Ruiying</au><au>Pendlebury, Devon F.</au><au>Cohen, Itay</au><au>Henin, Rachel D.</au><au>Hockla, Alexandra</au><au>Soares, Alexei S.</au><au>Papo, Niv</au><au>Caulfield, Thomas R.</au><au>Radisky, Evette S.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-12-16</date><risdate>2016</risdate><volume>291</volume><issue>51</issue><spage>26304</spage><epage>26319</epage><pages>26304-26319</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27810896</pmid><doi>10.1074/jbc.M116.758417</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-12, Vol.291 (51), p.26304-26319
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5159493
source ScienceDirect; PubMed Central
subjects Animals
Aprotinin - chemistry
BASIC BIOLOGICAL SCIENCES
Catalysis
Cattle
crystal structure
Crystallography, X-Ray
enzyme catalysis
Enzymology
molecular dynamics
Molecular Dynamics Simulation
molecular modeling
protease inhibitor
protein conformation
Protein Domains
Protein dynamic
protein structure
Proteolysis
serine protease
Trypsin - chemistry
title An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Acrobatic%20Substrate%20Metamorphosis%20Reveals%20a%20Requirement%20for%20Substrate%20Conformational%20Dynamics%20in%20Trypsin%20Proteolysis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kayode,%20Olumide&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2016-12-16&rft.volume=291&rft.issue=51&rft.spage=26304&rft.epage=26319&rft.pages=26304-26319&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.758417&rft_dat=%3Cproquest_pubme%3E1836733996%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836733996&rft_id=info:pmid/27810896&rfr_iscdi=true