Loading…
An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis
The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynami...
Saved in:
Published in: | The Journal of biological chemistry 2016-12, Vol.291 (51), p.26304-26319 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563 |
container_end_page | 26319 |
container_issue | 51 |
container_start_page | 26304 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Kayode, Olumide Wang, Ruiying Pendlebury, Devon F. Cohen, Itay Henin, Rachel D. Hockla, Alexandra Soares, Alexei S. Papo, Niv Caulfield, Thomas R. Radisky, Evette S. |
description | The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. |
doi_str_mv | 10.1074/jbc.M116.758417 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5159493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820344537</els_id><sourcerecordid>1836733996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhS0EokNhzQ5FrNhkaseveIM0Gp5SKxAUiZ3lODeMq8Se2s6g-fd4lFKVBd5cyz738_E9CL0keE2wZBc3nV1fESLWkreMyEdoRXBLa8rJz8dohXFDatXw9gw9S-kGl8UUeYrOGtkWnRIr9Hvjq42NoTPZ2er73KUcTYbqCrKZQtzvQnKp-gYHMGOqTNndzi7CBD5XQ4gPOrbBl4OpcII3Y_Xu6M3kbKqcr67jcZ9K_RpDhjAeC_I5ejIUIry4q-fox4f319tP9eWXj5-3m8vaMolzrbgaFB7EoIzsrRhaIRsiDAVQinKOWyItZx3YnrMGhKKSCdI2gtmuJZYLeo7eLtz93E3Q2-I7mlHvo5tMPOpgnP73xrud_hUOmhOumKIF8HoBhJSdTtZlsDsbvAebNSmDlg0rojd3r8RwO0PKenLJwjgaD2FOmrRUSEqVOhm6WKRl6ClFGO69EKxPmeqSqT5lqpdMS8erh1-41_8NsQjUIoAyyIODeLIJ3kJfkiou--D-C_8DuK6zHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836733996</pqid></control><display><type>article</type><title>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Kayode, Olumide ; Wang, Ruiying ; Pendlebury, Devon F. ; Cohen, Itay ; Henin, Rachel D. ; Hockla, Alexandra ; Soares, Alexei S. ; Papo, Niv ; Caulfield, Thomas R. ; Radisky, Evette S.</creator><creatorcontrib>Kayode, Olumide ; Wang, Ruiying ; Pendlebury, Devon F. ; Cohen, Itay ; Henin, Rachel D. ; Hockla, Alexandra ; Soares, Alexei S. ; Papo, Niv ; Caulfield, Thomas R. ; Radisky, Evette S. ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.758417</identifier><identifier>PMID: 27810896</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Aprotinin - chemistry ; BASIC BIOLOGICAL SCIENCES ; Catalysis ; Cattle ; crystal structure ; Crystallography, X-Ray ; enzyme catalysis ; Enzymology ; molecular dynamics ; Molecular Dynamics Simulation ; molecular modeling ; protease inhibitor ; protein conformation ; Protein Domains ; Protein dynamic ; protein structure ; Proteolysis ; serine protease ; Trypsin - chemistry</subject><ispartof>The Journal of biological chemistry, 2016-12, Vol.291 (51), p.26304-26319</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</citedby><cites>FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159493/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820344537$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27810896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1351724$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayode, Olumide</creatorcontrib><creatorcontrib>Wang, Ruiying</creatorcontrib><creatorcontrib>Pendlebury, Devon F.</creatorcontrib><creatorcontrib>Cohen, Itay</creatorcontrib><creatorcontrib>Henin, Rachel D.</creatorcontrib><creatorcontrib>Hockla, Alexandra</creatorcontrib><creatorcontrib>Soares, Alexei S.</creatorcontrib><creatorcontrib>Papo, Niv</creatorcontrib><creatorcontrib>Caulfield, Thomas R.</creatorcontrib><creatorcontrib>Radisky, Evette S.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.</description><subject>Animals</subject><subject>Aprotinin - chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Catalysis</subject><subject>Cattle</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>enzyme catalysis</subject><subject>Enzymology</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular modeling</subject><subject>protease inhibitor</subject><subject>protein conformation</subject><subject>Protein Domains</subject><subject>Protein dynamic</subject><subject>protein structure</subject><subject>Proteolysis</subject><subject>serine protease</subject><subject>Trypsin - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtv1DAUhS0EokNhzQ5FrNhkaseveIM0Gp5SKxAUiZ3lODeMq8Se2s6g-fd4lFKVBd5cyz738_E9CL0keE2wZBc3nV1fESLWkreMyEdoRXBLa8rJz8dohXFDatXw9gw9S-kGl8UUeYrOGtkWnRIr9Hvjq42NoTPZ2er73KUcTYbqCrKZQtzvQnKp-gYHMGOqTNndzi7CBD5XQ4gPOrbBl4OpcII3Y_Xu6M3kbKqcr67jcZ9K_RpDhjAeC_I5ejIUIry4q-fox4f319tP9eWXj5-3m8vaMolzrbgaFB7EoIzsrRhaIRsiDAVQinKOWyItZx3YnrMGhKKSCdI2gtmuJZYLeo7eLtz93E3Q2-I7mlHvo5tMPOpgnP73xrud_hUOmhOumKIF8HoBhJSdTtZlsDsbvAebNSmDlg0rojd3r8RwO0PKenLJwjgaD2FOmrRUSEqVOhm6WKRl6ClFGO69EKxPmeqSqT5lqpdMS8erh1-41_8NsQjUIoAyyIODeLIJ3kJfkiou--D-C_8DuK6zHg</recordid><startdate>20161216</startdate><enddate>20161216</enddate><creator>Kayode, Olumide</creator><creator>Wang, Ruiying</creator><creator>Pendlebury, Devon F.</creator><creator>Cohen, Itay</creator><creator>Henin, Rachel D.</creator><creator>Hockla, Alexandra</creator><creator>Soares, Alexei S.</creator><creator>Papo, Niv</creator><creator>Caulfield, Thomas R.</creator><creator>Radisky, Evette S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161216</creationdate><title>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</title><author>Kayode, Olumide ; Wang, Ruiying ; Pendlebury, Devon F. ; Cohen, Itay ; Henin, Rachel D. ; Hockla, Alexandra ; Soares, Alexei S. ; Papo, Niv ; Caulfield, Thomas R. ; Radisky, Evette S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aprotinin - chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Catalysis</topic><topic>Cattle</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>enzyme catalysis</topic><topic>Enzymology</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular modeling</topic><topic>protease inhibitor</topic><topic>protein conformation</topic><topic>Protein Domains</topic><topic>Protein dynamic</topic><topic>protein structure</topic><topic>Proteolysis</topic><topic>serine protease</topic><topic>Trypsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayode, Olumide</creatorcontrib><creatorcontrib>Wang, Ruiying</creatorcontrib><creatorcontrib>Pendlebury, Devon F.</creatorcontrib><creatorcontrib>Cohen, Itay</creatorcontrib><creatorcontrib>Henin, Rachel D.</creatorcontrib><creatorcontrib>Hockla, Alexandra</creatorcontrib><creatorcontrib>Soares, Alexei S.</creatorcontrib><creatorcontrib>Papo, Niv</creatorcontrib><creatorcontrib>Caulfield, Thomas R.</creatorcontrib><creatorcontrib>Radisky, Evette S.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayode, Olumide</au><au>Wang, Ruiying</au><au>Pendlebury, Devon F.</au><au>Cohen, Itay</au><au>Henin, Rachel D.</au><au>Hockla, Alexandra</au><au>Soares, Alexei S.</au><au>Papo, Niv</au><au>Caulfield, Thomas R.</au><au>Radisky, Evette S.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-12-16</date><risdate>2016</risdate><volume>291</volume><issue>51</issue><spage>26304</spage><epage>26319</epage><pages>26304-26319</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27810896</pmid><doi>10.1074/jbc.M116.758417</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-12, Vol.291 (51), p.26304-26319 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5159493 |
source | ScienceDirect; PubMed Central |
subjects | Animals Aprotinin - chemistry BASIC BIOLOGICAL SCIENCES Catalysis Cattle crystal structure Crystallography, X-Ray enzyme catalysis Enzymology molecular dynamics Molecular Dynamics Simulation molecular modeling protease inhibitor protein conformation Protein Domains Protein dynamic protein structure Proteolysis serine protease Trypsin - chemistry |
title | An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Acrobatic%20Substrate%20Metamorphosis%20Reveals%20a%20Requirement%20for%20Substrate%20Conformational%20Dynamics%20in%20Trypsin%20Proteolysis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kayode,%20Olumide&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2016-12-16&rft.volume=291&rft.issue=51&rft.spage=26304&rft.epage=26319&rft.pages=26304-26319&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.758417&rft_dat=%3Cproquest_pubme%3E1836733996%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-959f90f6f9a7dc6f867216a3ee993550817c54becd542e69374618264cb81c563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836733996&rft_id=info:pmid/27810896&rfr_iscdi=true |