Loading…

Structural insight into the role of the Ton complex in energy transduction

In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2016-10, Vol.538 (7623), p.60-65
Main Authors: Celia, Hervé, Noinaj, Nicholas, Zakharov, Stanislav D., Bordignon, Enrica, Botos, Istvan, Santamaria, Monica, Barnard, Travis J., Cramer, William A., Lloubes, Roland, Buchanan, Susan K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c788t-f41863da6c2e131b3c63e419ed8ecd2d2f76e43b6a65bb796ed1c6794b78d4d53
cites cdi_FETCH-LOGICAL-c788t-f41863da6c2e131b3c63e419ed8ecd2d2f76e43b6a65bb796ed1c6794b78d4d53
container_end_page 65
container_issue 7623
container_start_page 60
container_title Nature (London)
container_volume 538
creator Celia, Hervé
Noinaj, Nicholas
Zakharov, Stanislav D.
Bordignon, Enrica
Botos, Istvan
Santamaria, Monica
Barnard, Travis J.
Cramer, William A.
Lloubes, Roland
Buchanan, Susan K.
description In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron–electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy. Structural studies shed light on the function and stoichiometry of the Ton complex, which harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane. Ton complex structure and function The Ton complex is an inner membrane system in Gram-negative bacteria that, acting with outer membrane transporters, harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane This tour-de-force study reports the first structural characterization of the Ton complex, composed of three transmembrane protein components, ExbB, ExbD and TonB. Using a combination of X-ray crystallography, electron microscopy and DEER spectroscopy, Susan Buchanan and colleagues provide unprecedented mechanistic insight into the function and stoichiometry of the Ton complex. Such insights are extensive to the homologous Tol and Mol complexes, which harness the proton motive force to generate mechanical energy.
doi_str_mv 10.1038/nature19757
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5161667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A465704141</galeid><sourcerecordid>A465704141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c788t-f41863da6c2e131b3c63e419ed8ecd2d2f76e43b6a65bb796ed1c6794b78d4d53</originalsourceid><addsrcrecordid>eNp10k9v0zAYBvAIgVg3OHFH0XZhggw7duzkglRVwIYqkFgRR8tx3qSeUruznWn79nPpGO0U5IMj-5fH_94keYPRGUak_GhkGBzgihf8WTLBlLOMspI_TyYI5WWGSsIOkkPvrxBCBeb0ZXKQc1bQCleT5NtlcIOKAbJPtfG6W4bYB5uGJaTO9pDa9s_3wppU2dW6h9sIUjDgurs0OGl8EwO0Na-SF63sPbx-6I-SX18-L2bn2fzH14vZdJ4pXpYhaykuGWkkUzlggmuiGAGKK2hKUE3e5C1nQEnNJCvqmlcMGqwYr2jNy4Y2BTlKPm1z10O9gkaBibvoxdrplXR3wkot9meMXorO3ogCM8wYjwHH2wDrgxZe6QBqqawxoILAhKCckIhOt2j5JPt8OhebMYTjcSgnNzjadw87cvZ6AB_ESnsFfS8N2MELXJIiNlygSE-e0Cs7OBPvK6qc56TivPqnOtmD0Ka18SBqEyqmlBUcUUw3y2Yjqts8jeytgVbH4T1_POLVWl-LXXQ2gmJrYKXVaOrp3g_RBLgNnRy8FxeXP_ft-__b6eL37PuoVs5676B9fAeMxKb0xU7pR_12tywe7d9aj-DDFvg4ZTpwO1c_kncP2ycJaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827239779</pqid></control><display><type>article</type><title>Structural insight into the role of the Ton complex in energy transduction</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Celia, Hervé ; Noinaj, Nicholas ; Zakharov, Stanislav D. ; Bordignon, Enrica ; Botos, Istvan ; Santamaria, Monica ; Barnard, Travis J. ; Cramer, William A. ; Lloubes, Roland ; Buchanan, Susan K.</creator><creatorcontrib>Celia, Hervé ; Noinaj, Nicholas ; Zakharov, Stanislav D. ; Bordignon, Enrica ; Botos, Istvan ; Santamaria, Monica ; Barnard, Travis J. ; Cramer, William A. ; Lloubes, Roland ; Buchanan, Susan K. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron–electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy. Structural studies shed light on the function and stoichiometry of the Ton complex, which harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane. Ton complex structure and function The Ton complex is an inner membrane system in Gram-negative bacteria that, acting with outer membrane transporters, harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane This tour-de-force study reports the first structural characterization of the Ton complex, composed of three transmembrane protein components, ExbB, ExbD and TonB. Using a combination of X-ray crystallography, electron microscopy and DEER spectroscopy, Susan Buchanan and colleagues provide unprecedented mechanistic insight into the function and stoichiometry of the Ton complex. Such insights are extensive to the homologous Tol and Mol complexes, which harness the proton motive force to generate mechanical energy.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature19757</identifier><identifier>PMID: 27654919</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/28 ; 631/326/41/2536 ; 631/535/1266 ; 631/57/1464 ; Bacteria ; Biochemistry, Molecular Biology ; Bioenergetics ; Crystal structure ; Crystallography ; Crystallography, X-Ray ; Cytoplasm ; E coli ; Energy metabolism ; Escherichia coli - chemistry ; Escherichia coli - ultrastructure ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Escherichia coli Proteins - ultrastructure ; Gram-negative bacteria ; Humanities and Social Sciences ; Hydrogen-Ion Concentration ; Life Sciences ; Ligands ; Membrane proteins ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Membrane Proteins - ultrastructure ; Membranes ; multidisciplinary ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Multiprotein Complexes - ultrastructure ; Observations ; Physiological aspects ; Proton-Motive Force ; Science</subject><ispartof>Nature (London), 2016-10, Vol.538 (7623), p.60-65</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 6, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c788t-f41863da6c2e131b3c63e419ed8ecd2d2f76e43b6a65bb796ed1c6794b78d4d53</citedby><cites>FETCH-LOGICAL-c788t-f41863da6c2e131b3c63e419ed8ecd2d2f76e43b6a65bb796ed1c6794b78d4d53</cites><orcidid>0000-0002-9520-1053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27654919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-01788473$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1330233$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Celia, Hervé</creatorcontrib><creatorcontrib>Noinaj, Nicholas</creatorcontrib><creatorcontrib>Zakharov, Stanislav D.</creatorcontrib><creatorcontrib>Bordignon, Enrica</creatorcontrib><creatorcontrib>Botos, Istvan</creatorcontrib><creatorcontrib>Santamaria, Monica</creatorcontrib><creatorcontrib>Barnard, Travis J.</creatorcontrib><creatorcontrib>Cramer, William A.</creatorcontrib><creatorcontrib>Lloubes, Roland</creatorcontrib><creatorcontrib>Buchanan, Susan K.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Structural insight into the role of the Ton complex in energy transduction</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron–electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy. Structural studies shed light on the function and stoichiometry of the Ton complex, which harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane. Ton complex structure and function The Ton complex is an inner membrane system in Gram-negative bacteria that, acting with outer membrane transporters, harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane This tour-de-force study reports the first structural characterization of the Ton complex, composed of three transmembrane protein components, ExbB, ExbD and TonB. Using a combination of X-ray crystallography, electron microscopy and DEER spectroscopy, Susan Buchanan and colleagues provide unprecedented mechanistic insight into the function and stoichiometry of the Ton complex. Such insights are extensive to the homologous Tol and Mol complexes, which harness the proton motive force to generate mechanical energy.</description><subject>14</subject><subject>14/28</subject><subject>631/326/41/2536</subject><subject>631/535/1266</subject><subject>631/57/1464</subject><subject>Bacteria</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioenergetics</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Cytoplasm</subject><subject>E coli</subject><subject>Energy metabolism</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - ultrastructure</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Escherichia coli Proteins - ultrastructure</subject><subject>Gram-negative bacteria</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Proteins - ultrastructure</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Proton-Motive Force</subject><subject>Science</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10k9v0zAYBvAIgVg3OHFH0XZhggw7duzkglRVwIYqkFgRR8tx3qSeUruznWn79nPpGO0U5IMj-5fH_94keYPRGUak_GhkGBzgihf8WTLBlLOMspI_TyYI5WWGSsIOkkPvrxBCBeb0ZXKQc1bQCleT5NtlcIOKAbJPtfG6W4bYB5uGJaTO9pDa9s_3wppU2dW6h9sIUjDgurs0OGl8EwO0Na-SF63sPbx-6I-SX18-L2bn2fzH14vZdJ4pXpYhaykuGWkkUzlggmuiGAGKK2hKUE3e5C1nQEnNJCvqmlcMGqwYr2jNy4Y2BTlKPm1z10O9gkaBibvoxdrplXR3wkot9meMXorO3ogCM8wYjwHH2wDrgxZe6QBqqawxoILAhKCckIhOt2j5JPt8OhebMYTjcSgnNzjadw87cvZ6AB_ESnsFfS8N2MELXJIiNlygSE-e0Cs7OBPvK6qc56TivPqnOtmD0Ka18SBqEyqmlBUcUUw3y2Yjqts8jeytgVbH4T1_POLVWl-LXXQ2gmJrYKXVaOrp3g_RBLgNnRy8FxeXP_ft-__b6eL37PuoVs5676B9fAeMxKb0xU7pR_12tywe7d9aj-DDFvg4ZTpwO1c_kncP2ycJaA</recordid><startdate>20161006</startdate><enddate>20161006</enddate><creator>Celia, Hervé</creator><creator>Noinaj, Nicholas</creator><creator>Zakharov, Stanislav D.</creator><creator>Bordignon, Enrica</creator><creator>Botos, Istvan</creator><creator>Santamaria, Monica</creator><creator>Barnard, Travis J.</creator><creator>Cramer, William A.</creator><creator>Lloubes, Roland</creator><creator>Buchanan, Susan K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9520-1053</orcidid></search><sort><creationdate>20161006</creationdate><title>Structural insight into the role of the Ton complex in energy transduction</title><author>Celia, Hervé ; Noinaj, Nicholas ; Zakharov, Stanislav D. ; Bordignon, Enrica ; Botos, Istvan ; Santamaria, Monica ; Barnard, Travis J. ; Cramer, William A. ; Lloubes, Roland ; Buchanan, Susan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c788t-f41863da6c2e131b3c63e419ed8ecd2d2f76e43b6a65bb796ed1c6794b78d4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14</topic><topic>14/28</topic><topic>631/326/41/2536</topic><topic>631/535/1266</topic><topic>631/57/1464</topic><topic>Bacteria</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioenergetics</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Cytoplasm</topic><topic>E coli</topic><topic>Energy metabolism</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - ultrastructure</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Escherichia coli Proteins - ultrastructure</topic><topic>Gram-negative bacteria</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Proteins - ultrastructure</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Proton-Motive Force</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celia, Hervé</creatorcontrib><creatorcontrib>Noinaj, Nicholas</creatorcontrib><creatorcontrib>Zakharov, Stanislav D.</creatorcontrib><creatorcontrib>Bordignon, Enrica</creatorcontrib><creatorcontrib>Botos, Istvan</creatorcontrib><creatorcontrib>Santamaria, Monica</creatorcontrib><creatorcontrib>Barnard, Travis J.</creatorcontrib><creatorcontrib>Cramer, William A.</creatorcontrib><creatorcontrib>Lloubes, Roland</creatorcontrib><creatorcontrib>Buchanan, Susan K.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celia, Hervé</au><au>Noinaj, Nicholas</au><au>Zakharov, Stanislav D.</au><au>Bordignon, Enrica</au><au>Botos, Istvan</au><au>Santamaria, Monica</au><au>Barnard, Travis J.</au><au>Cramer, William A.</au><au>Lloubes, Roland</au><au>Buchanan, Susan K.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insight into the role of the Ton complex in energy transduction</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2016-10-06</date><risdate>2016</risdate><volume>538</volume><issue>7623</issue><spage>60</spage><epage>65</epage><pages>60-65</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron–electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy. Structural studies shed light on the function and stoichiometry of the Ton complex, which harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane. Ton complex structure and function The Ton complex is an inner membrane system in Gram-negative bacteria that, acting with outer membrane transporters, harnesses the proton motive force across the bacterial inner membrane to transduce energy to the outer membrane This tour-de-force study reports the first structural characterization of the Ton complex, composed of three transmembrane protein components, ExbB, ExbD and TonB. Using a combination of X-ray crystallography, electron microscopy and DEER spectroscopy, Susan Buchanan and colleagues provide unprecedented mechanistic insight into the function and stoichiometry of the Ton complex. Such insights are extensive to the homologous Tol and Mol complexes, which harness the proton motive force to generate mechanical energy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27654919</pmid><doi>10.1038/nature19757</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9520-1053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2016-10, Vol.538 (7623), p.60-65
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5161667
source Springer Nature - Connect here FIRST to enable access
subjects 14
14/28
631/326/41/2536
631/535/1266
631/57/1464
Bacteria
Biochemistry, Molecular Biology
Bioenergetics
Crystal structure
Crystallography
Crystallography, X-Ray
Cytoplasm
E coli
Energy metabolism
Escherichia coli - chemistry
Escherichia coli - ultrastructure
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Escherichia coli Proteins - ultrastructure
Gram-negative bacteria
Humanities and Social Sciences
Hydrogen-Ion Concentration
Life Sciences
Ligands
Membrane proteins
Membrane Proteins - chemistry
Membrane Proteins - metabolism
Membrane Proteins - ultrastructure
Membranes
multidisciplinary
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Multiprotein Complexes - ultrastructure
Observations
Physiological aspects
Proton-Motive Force
Science
title Structural insight into the role of the Ton complex in energy transduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insight%20into%20the%20role%20of%20the%20Ton%20complex%20in%20energy%20transduction&rft.jtitle=Nature%20(London)&rft.au=Celia,%20Herv%C3%A9&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-10-06&rft.volume=538&rft.issue=7623&rft.spage=60&rft.epage=65&rft.pages=60-65&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature19757&rft_dat=%3Cgale_pubme%3EA465704141%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c788t-f41863da6c2e131b3c63e419ed8ecd2d2f76e43b6a65bb796ed1c6794b78d4d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1827239779&rft_id=info:pmid/27654919&rft_galeid=A465704141&rfr_iscdi=true