Loading…

Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights

Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes rem...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2016-12, Vol.113 (50), p.E8021-E8030
Main Authors: Shimizu, Masahiro, Noguchi, Yasunori, Sakiyama, Yukari, Kawakami, Hironori, Katayama, Tsutomu, Takada, Shoji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3
cites cdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3
container_end_page E8030
container_issue 50
container_start_page E8021
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Shimizu, Masahiro
Noguchi, Yasunori
Sakiyama, Yukari
Kawakami, Hironori
Katayama, Tsutomu
Takada, Shoji
description Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.
doi_str_mv 10.1073/pnas.1609649113
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472863</jstor_id><sourcerecordid>26472863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</originalsourceid><addsrcrecordid>eNqNkctPFTEYxRuDkQu6diVp4obNQN-PDQnhoSYEN7puens70JuZdmg7Rv97OrkI6spVH-f3nfT0APAeoxOMJD2doi0nWCAtmMaYvgIrjDTu2gntgRVCRHaKEbYPDkrZIoQ0V-gN2Cey0VKpFQi33ubO1jQGB0vNs6tztgMc08YPsE8Zrq2rPod2d3l7DrOfhuBsDSnCEEMNu61L4zT4n9DGDQy1wH6ObhHaVIgl3N3X8ha87u1Q_Lun9RB8v776dvG5u_n66cvF-U3nOCO1o05IJ3tNMFdO92vLZYuhqBaOUyylZpg5Lr2kXLDeow1ZC6a81pgoSZGlh-Bs5zvN69FvnI-1BTJTDqPNv0yywfytxHBv7tIPw7GQWOBmcPxkkNPD7Es1YyjOD4ONPs3FYCUowUgQ_R8o44oKLXhDP_6DbtOc2wctFG-tKUkW6nRHuZxKyb5_fjdGZmncLI2bl8bbxNGfcZ_53xU34MMO2Jaa8osumCQtCX0EulexVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851098725</pqid></control><display><type>article</type><title>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Shimizu, Masahiro ; Noguchi, Yasunori ; Sakiyama, Yukari ; Kawakami, Hironori ; Katayama, Tsutomu ; Takada, Shoji</creator><creatorcontrib>Shimizu, Masahiro ; Noguchi, Yasunori ; Sakiyama, Yukari ; Kawakami, Hironori ; Katayama, Tsutomu ; Takada, Shoji</creatorcontrib><description>Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609649113</identifier><identifier>PMID: 27911788</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphate - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Base Sequence ; Biochemistry ; Biological Sciences ; Chromosomes ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA Replication - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Integration Host Factors - chemistry ; Integration Host Factors - metabolism ; Models, Molecular ; Molecular biology ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Origin Recognition Complex - chemistry ; Origin Recognition Complex - metabolism ; Physical Sciences ; PNAS Plus ; Protein Interaction Domains and Motifs ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.E8021-E8030</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 13, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</citedby><cites>FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27911788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimizu, Masahiro</creatorcontrib><creatorcontrib>Noguchi, Yasunori</creatorcontrib><creatorcontrib>Sakiyama, Yukari</creatorcontrib><creatorcontrib>Kawakami, Hironori</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><creatorcontrib>Takada, Shoji</creatorcontrib><title>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chromosomes</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Replication - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Integration Host Factors - chemistry</subject><subject>Integration Host Factors - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Origin Recognition Complex - chemistry</subject><subject>Origin Recognition Complex - metabolism</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctPFTEYxRuDkQu6diVp4obNQN-PDQnhoSYEN7puens70JuZdmg7Rv97OrkI6spVH-f3nfT0APAeoxOMJD2doi0nWCAtmMaYvgIrjDTu2gntgRVCRHaKEbYPDkrZIoQ0V-gN2Cey0VKpFQi33ubO1jQGB0vNs6tztgMc08YPsE8Zrq2rPod2d3l7DrOfhuBsDSnCEEMNu61L4zT4n9DGDQy1wH6ObhHaVIgl3N3X8ha87u1Q_Lun9RB8v776dvG5u_n66cvF-U3nOCO1o05IJ3tNMFdO92vLZYuhqBaOUyylZpg5Lr2kXLDeow1ZC6a81pgoSZGlh-Bs5zvN69FvnI-1BTJTDqPNv0yywfytxHBv7tIPw7GQWOBmcPxkkNPD7Es1YyjOD4ONPs3FYCUowUgQ_R8o44oKLXhDP_6DbtOc2wctFG-tKUkW6nRHuZxKyb5_fjdGZmncLI2bl8bbxNGfcZ_53xU34MMO2Jaa8osumCQtCX0EulexVQ</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Shimizu, Masahiro</creator><creator>Noguchi, Yasunori</creator><creator>Sakiyama, Yukari</creator><creator>Kawakami, Hironori</creator><creator>Katayama, Tsutomu</creator><creator>Takada, Shoji</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161213</creationdate><title>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</title><author>Shimizu, Masahiro ; Noguchi, Yasunori ; Sakiyama, Yukari ; Kawakami, Hironori ; Katayama, Tsutomu ; Takada, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chromosomes</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Replication - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Integration Host Factors - chemistry</topic><topic>Integration Host Factors - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Origin Recognition Complex - chemistry</topic><topic>Origin Recognition Complex - metabolism</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Masahiro</creatorcontrib><creatorcontrib>Noguchi, Yasunori</creatorcontrib><creatorcontrib>Sakiyama, Yukari</creatorcontrib><creatorcontrib>Kawakami, Hironori</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><creatorcontrib>Takada, Shoji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Masahiro</au><au>Noguchi, Yasunori</au><au>Sakiyama, Yukari</au><au>Kawakami, Hironori</au><au>Katayama, Tsutomu</au><au>Takada, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>113</volume><issue>50</issue><spage>E8021</spage><epage>E8030</epage><pages>E8021-E8030</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27911788</pmid><doi>10.1073/pnas.1609649113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.E8021-E8030
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167161
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Adenosine Triphosphate - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Base Sequence
Biochemistry
Biological Sciences
Chromosomes
Computer Simulation
Deoxyribonucleic acid
DNA
DNA Replication - genetics
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Integration Host Factors - chemistry
Integration Host Factors - metabolism
Models, Molecular
Molecular biology
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Origin Recognition Complex - chemistry
Origin Recognition Complex - metabolism
Physical Sciences
PNAS Plus
Protein Interaction Domains and Motifs
Proteins
title Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-atomic%20structural%20model%20for%20bacterial%20DNA%20replication%20initiation%20complex%20and%20its%20functional%20insights&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shimizu,%20Masahiro&rft.date=2016-12-13&rft.volume=113&rft.issue=50&rft.spage=E8021&rft.epage=E8030&rft.pages=E8021-E8030&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609649113&rft_dat=%3Cjstor_pubme%3E26472863%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851098725&rft_id=info:pmid/27911788&rft_jstor_id=26472863&rfr_iscdi=true