Loading…
Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights
Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes rem...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2016-12, Vol.113 (50), p.E8021-E8030 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3 |
container_end_page | E8030 |
container_issue | 50 |
container_start_page | E8021 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Shimizu, Masahiro Noguchi, Yasunori Sakiyama, Yukari Kawakami, Hironori Katayama, Tsutomu Takada, Shoji |
description | Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes. |
doi_str_mv | 10.1073/pnas.1609649113 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472863</jstor_id><sourcerecordid>26472863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</originalsourceid><addsrcrecordid>eNqNkctPFTEYxRuDkQu6diVp4obNQN-PDQnhoSYEN7puens70JuZdmg7Rv97OrkI6spVH-f3nfT0APAeoxOMJD2doi0nWCAtmMaYvgIrjDTu2gntgRVCRHaKEbYPDkrZIoQ0V-gN2Cey0VKpFQi33ubO1jQGB0vNs6tztgMc08YPsE8Zrq2rPod2d3l7DrOfhuBsDSnCEEMNu61L4zT4n9DGDQy1wH6ObhHaVIgl3N3X8ha87u1Q_Lun9RB8v776dvG5u_n66cvF-U3nOCO1o05IJ3tNMFdO92vLZYuhqBaOUyylZpg5Lr2kXLDeow1ZC6a81pgoSZGlh-Bs5zvN69FvnI-1BTJTDqPNv0yywfytxHBv7tIPw7GQWOBmcPxkkNPD7Es1YyjOD4ONPs3FYCUowUgQ_R8o44oKLXhDP_6DbtOc2wctFG-tKUkW6nRHuZxKyb5_fjdGZmncLI2bl8bbxNGfcZ_53xU34MMO2Jaa8osumCQtCX0EulexVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851098725</pqid></control><display><type>article</type><title>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Shimizu, Masahiro ; Noguchi, Yasunori ; Sakiyama, Yukari ; Kawakami, Hironori ; Katayama, Tsutomu ; Takada, Shoji</creator><creatorcontrib>Shimizu, Masahiro ; Noguchi, Yasunori ; Sakiyama, Yukari ; Kawakami, Hironori ; Katayama, Tsutomu ; Takada, Shoji</creatorcontrib><description>Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609649113</identifier><identifier>PMID: 27911788</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphate - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Base Sequence ; Biochemistry ; Biological Sciences ; Chromosomes ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA Replication - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Integration Host Factors - chemistry ; Integration Host Factors - metabolism ; Models, Molecular ; Molecular biology ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Origin Recognition Complex - chemistry ; Origin Recognition Complex - metabolism ; Physical Sciences ; PNAS Plus ; Protein Interaction Domains and Motifs ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.E8021-E8030</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 13, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</citedby><cites>FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27911788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimizu, Masahiro</creatorcontrib><creatorcontrib>Noguchi, Yasunori</creatorcontrib><creatorcontrib>Sakiyama, Yukari</creatorcontrib><creatorcontrib>Kawakami, Hironori</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><creatorcontrib>Takada, Shoji</creatorcontrib><title>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chromosomes</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Replication - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Integration Host Factors - chemistry</subject><subject>Integration Host Factors - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Origin Recognition Complex - chemistry</subject><subject>Origin Recognition Complex - metabolism</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctPFTEYxRuDkQu6diVp4obNQN-PDQnhoSYEN7puens70JuZdmg7Rv97OrkI6spVH-f3nfT0APAeoxOMJD2doi0nWCAtmMaYvgIrjDTu2gntgRVCRHaKEbYPDkrZIoQ0V-gN2Cey0VKpFQi33ubO1jQGB0vNs6tztgMc08YPsE8Zrq2rPod2d3l7DrOfhuBsDSnCEEMNu61L4zT4n9DGDQy1wH6ObhHaVIgl3N3X8ha87u1Q_Lun9RB8v776dvG5u_n66cvF-U3nOCO1o05IJ3tNMFdO92vLZYuhqBaOUyylZpg5Lr2kXLDeow1ZC6a81pgoSZGlh-Bs5zvN69FvnI-1BTJTDqPNv0yywfytxHBv7tIPw7GQWOBmcPxkkNPD7Es1YyjOD4ONPs3FYCUowUgQ_R8o44oKLXhDP_6DbtOc2wctFG-tKUkW6nRHuZxKyb5_fjdGZmncLI2bl8bbxNGfcZ_53xU34MMO2Jaa8osumCQtCX0EulexVQ</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Shimizu, Masahiro</creator><creator>Noguchi, Yasunori</creator><creator>Sakiyama, Yukari</creator><creator>Kawakami, Hironori</creator><creator>Katayama, Tsutomu</creator><creator>Takada, Shoji</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161213</creationdate><title>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</title><author>Shimizu, Masahiro ; Noguchi, Yasunori ; Sakiyama, Yukari ; Kawakami, Hironori ; Katayama, Tsutomu ; Takada, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chromosomes</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Replication - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Integration Host Factors - chemistry</topic><topic>Integration Host Factors - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Origin Recognition Complex - chemistry</topic><topic>Origin Recognition Complex - metabolism</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Masahiro</creatorcontrib><creatorcontrib>Noguchi, Yasunori</creatorcontrib><creatorcontrib>Sakiyama, Yukari</creatorcontrib><creatorcontrib>Kawakami, Hironori</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><creatorcontrib>Takada, Shoji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Masahiro</au><au>Noguchi, Yasunori</au><au>Sakiyama, Yukari</au><au>Kawakami, Hironori</au><au>Katayama, Tsutomu</au><au>Takada, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>113</volume><issue>50</issue><spage>E8021</spage><epage>E8030</epage><pages>E8021-E8030</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC–DnaA–IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC–DnaA–IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27911788</pmid><doi>10.1073/pnas.1609649113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.E8021-E8030 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167161 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | Adenosine Triphosphate - metabolism Bacterial Proteins - chemistry Bacterial Proteins - metabolism Base Sequence Biochemistry Biological Sciences Chromosomes Computer Simulation Deoxyribonucleic acid DNA DNA Replication - genetics DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism Integration Host Factors - chemistry Integration Host Factors - metabolism Models, Molecular Molecular biology Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Origin Recognition Complex - chemistry Origin Recognition Complex - metabolism Physical Sciences PNAS Plus Protein Interaction Domains and Motifs Proteins |
title | Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-atomic%20structural%20model%20for%20bacterial%20DNA%20replication%20initiation%20complex%20and%20its%20functional%20insights&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shimizu,%20Masahiro&rft.date=2016-12-13&rft.volume=113&rft.issue=50&rft.spage=E8021&rft.epage=E8030&rft.pages=E8021-E8030&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609649113&rft_dat=%3Cjstor_pubme%3E26472863%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-3c67c7f92158c9fba570028396c531779414c57e73564fe0d2b648e99128730a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851098725&rft_id=info:pmid/27911788&rft_jstor_id=26472863&rfr_iscdi=true |