Loading…
Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C delta
c-Abl and Atm have been implicated in cell responses to DNA damage and oxidative stress. However, the molecular mechanisms by which they regulate oxidative stress response remain unclear. In this report, we show that deficiency of c-Abl and deficiency of ATM differentially altered cell responses to...
Saved in:
Published in: | Genes & development 2004-08, Vol.18 (15), p.1824-1837 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | c-Abl and Atm have been implicated in cell responses to DNA damage and oxidative stress. However, the molecular mechanisms by which they regulate oxidative stress response remain unclear. In this report, we show that deficiency of c-Abl and deficiency of ATM differentially altered cell responses to oxidative stress by induction of antioxidant protein peroxiredoxin I (Prx I) via Nrf2 and cell death, both of which required protein kinase C (PKC) delta activation and were mediated by reactive oxygen species. c-abl-/- osteoblasts displayed enhanced Prx I induction, elevated Nrf2 levels, and hypersusceptibility to arsenate, which were reinstated by reconstitution of c-Abl; Atm-/- osteoblasts showed the opposite. These phenotypes correlated with increased PKC delta expression in c-abl-/- osteoblasts and decreased PKC delta expression in Atm-/- cells, respectively. The enhanced responses of c-abl-/- osteoblasts could be mimicked by overexpression of PKC delta in normal cells and impeded by inhibition of PKC delta, and diminished responses of Atm-/- cells could be rescued by PKC delta overexpression, indicating that PKC delta mediated the effects of c-Abl and ATM in oxidative stress response. Hence, our results unveiled a previously unrecognized mechanism by which c-Abl and Atm participate in oxidative stress response. |
---|---|
ISSN: | 0890-9369 1549-5477 |
DOI: | 10.1101/gad.1223504 |