Loading…
Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL‐1Ra activity
Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inf...
Saved in:
Published in: | Journal of cellular and molecular medicine 2017-01, Vol.21 (1), p.130-141 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4487-92cbbdb1d61331f86de0c198b8a098f871b6554ac5996c20f0a9237d8db8e8b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c4487-92cbbdb1d61331f86de0c198b8a098f871b6554ac5996c20f0a9237d8db8e8b23 |
container_end_page | 141 |
container_issue | 1 |
container_start_page | 130 |
container_title | Journal of cellular and molecular medicine |
container_volume | 21 |
creator | Cho, Kyung‐Ah Park, Minhwa Kim, Yu‐Hee Woo, So‐Youn Ryu, Kyung‐Ha |
description | Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inflammation and subsequent tissue disorders, including fibrosis in skeletal muscle, is limited. FFAs are a natural ligand for toll‐like receptor 2 (TLR2) and TLR4, and induce chronic low‐grade inflammation that directly stimulates skeletal muscle tissue. However, persistent inflammatory stimulation in tissues could induce pro‐fibrogenic processes that ultimately lead to perturbation of the tissue architecture and dysfunction. Therefore, blocking the link between inflammatory primed skeletal muscle tissue and connective tissue might be an efficient therapeutic option for treating obesity‐induced muscle inactivity. In this study, we investigated the impact of conditioned medium obtained from human palatine tonsil‐derived mesenchymal stem cells (T‐MSCs) on the interaction between skeletal muscle cells stimulated with palmitic acid (PA) and fibroblasts. We found that PA‐treated skeletal muscle cells actively secreted interleukin‐1β (IL‐1β) and augmented the migration, proliferation and expression of fibronectin in L929 fibroblasts. Furthermore, T‐CM inhibited the skeletal muscle cell‐derived pro‐fibrogenic effect via the production of the interleukin‐1 receptor antagonist (IL‐1Ra), which is an inhibitor of IL‐1 signalling. Taken together, our data provide novel insights into the therapeutic potential of T‐MSC‐mediated therapy for the treatment of pathophysiological processes that occur in skeletal muscle tissues under chronic inflammatory conditions. |
doi_str_mv | 10.1111/jcmm.12947 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5192826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1853352902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-92cbbdb1d61331f86de0c198b8a098f871b6554ac5996c20f0a9237d8db8e8b23</originalsourceid><addsrcrecordid>eNp9kc2KFDEURgtRnHF04wNIwI0IPSapSlWyEaTxZ6QHQXQdktSt6TSVpE1SM9TORxB8Q5_ElN0O6sJsEsjJuffmq6rHBJ-Tsl7sjHPnhIqmu1OdEsbpqhF1c_d4JrzmJ9WDlHYY1y2pxf3qhHYtEYx1p9X3dfC9zTZ46JGD3io0xODQdnLKo70aVbYeUA4-2bEACbzZzk6NKGVwyMA4JhThaiogJJS3gKzPEJVZnEhDvgHwyM0hT7oAyvdosDoGPaqUE9Izutj8-PqNfFRoeXNt8_ywujeoMcGj435WfX7z-tP63Wrz4e3F-tVmZZqGdytBjda9Jn0ZqiYDb3vAhgiuucKCD7wjumWsUYYJ0RqKB6wErbue95oD17Q-q14evPtJl9EN-BzVKPfROhVnGZSVf994u5VX4VoyIiinbRE8Owpi-DJBytLZtHyJ8hCmJAlndc2owEutp_-guzBFX8aTlHLR4bYTrFDPD5SJIaUIw20zBMsla7lkLX9lXeAnf7Z_i_4OtwDkANzYEeb_qOT79eXlQfoTyOq5TQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289706795</pqid></control><display><type>article</type><title>Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL‐1Ra activity</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Cho, Kyung‐Ah ; Park, Minhwa ; Kim, Yu‐Hee ; Woo, So‐Youn ; Ryu, Kyung‐Ha</creator><creatorcontrib>Cho, Kyung‐Ah ; Park, Minhwa ; Kim, Yu‐Hee ; Woo, So‐Youn ; Ryu, Kyung‐Ha</creatorcontrib><description>Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inflammation and subsequent tissue disorders, including fibrosis in skeletal muscle, is limited. FFAs are a natural ligand for toll‐like receptor 2 (TLR2) and TLR4, and induce chronic low‐grade inflammation that directly stimulates skeletal muscle tissue. However, persistent inflammatory stimulation in tissues could induce pro‐fibrogenic processes that ultimately lead to perturbation of the tissue architecture and dysfunction. Therefore, blocking the link between inflammatory primed skeletal muscle tissue and connective tissue might be an efficient therapeutic option for treating obesity‐induced muscle inactivity. In this study, we investigated the impact of conditioned medium obtained from human palatine tonsil‐derived mesenchymal stem cells (T‐MSCs) on the interaction between skeletal muscle cells stimulated with palmitic acid (PA) and fibroblasts. We found that PA‐treated skeletal muscle cells actively secreted interleukin‐1β (IL‐1β) and augmented the migration, proliferation and expression of fibronectin in L929 fibroblasts. Furthermore, T‐CM inhibited the skeletal muscle cell‐derived pro‐fibrogenic effect via the production of the interleukin‐1 receptor antagonist (IL‐1Ra), which is an inhibitor of IL‐1 signalling. Taken together, our data provide novel insights into the therapeutic potential of T‐MSC‐mediated therapy for the treatment of pathophysiological processes that occur in skeletal muscle tissues under chronic inflammatory conditions.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.12947</identifier><identifier>PMID: 27619557</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Animals ; Arthritis ; Cell Line ; Cell proliferation ; Conditioning ; Connective tissues ; Culture Media, Conditioned - metabolism ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - metabolism ; fatty acid ; Fatty acids ; fibroblast ; Fibroblasts ; Fibroblasts - metabolism ; Fibronectin ; Fibrosis ; Genomes ; human palatine tonsil‐derived mesenchymal stem cells ; Humans ; IL‐1Ra ; IL‐1β ; Inflammation ; Insulin ; Insulin Resistance - physiology ; Interleukin 1 Receptor Antagonist Protein - metabolism ; Interleukin-1beta - metabolism ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - metabolism ; Mesenchyme ; Mice ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myotubes ; Obesity ; Original ; Palatine Tonsil - metabolism ; Palmitic acid ; Skeletal muscle ; Stem cells ; Tissue engineering ; Tissues ; TLR2 protein ; TLR4 protein ; Toll-Like Receptor 2 - metabolism ; Toll-like receptors ; Tonsil</subject><ispartof>Journal of cellular and molecular medicine, 2017-01, Vol.21 (1), p.130-141</ispartof><rights>2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-92cbbdb1d61331f86de0c198b8a098f871b6554ac5996c20f0a9237d8db8e8b23</citedby><cites>FETCH-LOGICAL-c4487-92cbbdb1d61331f86de0c198b8a098f871b6554ac5996c20f0a9237d8db8e8b23</cites><orcidid>0000-0003-3758-4209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289706795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289706795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11561,25752,27923,27924,37011,37012,44589,46051,46475,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27619557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Kyung‐Ah</creatorcontrib><creatorcontrib>Park, Minhwa</creatorcontrib><creatorcontrib>Kim, Yu‐Hee</creatorcontrib><creatorcontrib>Woo, So‐Youn</creatorcontrib><creatorcontrib>Ryu, Kyung‐Ha</creatorcontrib><title>Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL‐1Ra activity</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inflammation and subsequent tissue disorders, including fibrosis in skeletal muscle, is limited. FFAs are a natural ligand for toll‐like receptor 2 (TLR2) and TLR4, and induce chronic low‐grade inflammation that directly stimulates skeletal muscle tissue. However, persistent inflammatory stimulation in tissues could induce pro‐fibrogenic processes that ultimately lead to perturbation of the tissue architecture and dysfunction. Therefore, blocking the link between inflammatory primed skeletal muscle tissue and connective tissue might be an efficient therapeutic option for treating obesity‐induced muscle inactivity. In this study, we investigated the impact of conditioned medium obtained from human palatine tonsil‐derived mesenchymal stem cells (T‐MSCs) on the interaction between skeletal muscle cells stimulated with palmitic acid (PA) and fibroblasts. We found that PA‐treated skeletal muscle cells actively secreted interleukin‐1β (IL‐1β) and augmented the migration, proliferation and expression of fibronectin in L929 fibroblasts. Furthermore, T‐CM inhibited the skeletal muscle cell‐derived pro‐fibrogenic effect via the production of the interleukin‐1 receptor antagonist (IL‐1Ra), which is an inhibitor of IL‐1 signalling. Taken together, our data provide novel insights into the therapeutic potential of T‐MSC‐mediated therapy for the treatment of pathophysiological processes that occur in skeletal muscle tissues under chronic inflammatory conditions.</description><subject>Animals</subject><subject>Arthritis</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Conditioning</subject><subject>Connective tissues</subject><subject>Culture Media, Conditioned - metabolism</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>fatty acid</subject><subject>Fatty acids</subject><subject>fibroblast</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibronectin</subject><subject>Fibrosis</subject><subject>Genomes</subject><subject>human palatine tonsil‐derived mesenchymal stem cells</subject><subject>Humans</subject><subject>IL‐1Ra</subject><subject>IL‐1β</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin Resistance - physiology</subject><subject>Interleukin 1 Receptor Antagonist Protein - metabolism</subject><subject>Interleukin-1beta - metabolism</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myotubes</subject><subject>Obesity</subject><subject>Original</subject><subject>Palatine Tonsil - metabolism</subject><subject>Palmitic acid</subject><subject>Skeletal muscle</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissues</subject><subject>TLR2 protein</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptors</subject><subject>Tonsil</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc2KFDEURgtRnHF04wNIwI0IPSapSlWyEaTxZ6QHQXQdktSt6TSVpE1SM9TORxB8Q5_ElN0O6sJsEsjJuffmq6rHBJ-Tsl7sjHPnhIqmu1OdEsbpqhF1c_d4JrzmJ9WDlHYY1y2pxf3qhHYtEYx1p9X3dfC9zTZ46JGD3io0xODQdnLKo70aVbYeUA4-2bEACbzZzk6NKGVwyMA4JhThaiogJJS3gKzPEJVZnEhDvgHwyM0hT7oAyvdosDoGPaqUE9Izutj8-PqNfFRoeXNt8_ywujeoMcGj435WfX7z-tP63Wrz4e3F-tVmZZqGdytBjda9Jn0ZqiYDb3vAhgiuucKCD7wjumWsUYYJ0RqKB6wErbue95oD17Q-q14evPtJl9EN-BzVKPfROhVnGZSVf994u5VX4VoyIiinbRE8Owpi-DJBytLZtHyJ8hCmJAlndc2owEutp_-guzBFX8aTlHLR4bYTrFDPD5SJIaUIw20zBMsla7lkLX9lXeAnf7Z_i_4OtwDkANzYEeb_qOT79eXlQfoTyOq5TQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Cho, Kyung‐Ah</creator><creator>Park, Minhwa</creator><creator>Kim, Yu‐Hee</creator><creator>Woo, So‐Youn</creator><creator>Ryu, Kyung‐Ha</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3758-4209</orcidid></search><sort><creationdate>201701</creationdate><title>Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL‐1Ra activity</title><author>Cho, Kyung‐Ah ; Park, Minhwa ; Kim, Yu‐Hee ; Woo, So‐Youn ; Ryu, Kyung‐Ha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-92cbbdb1d61331f86de0c198b8a098f871b6554ac5996c20f0a9237d8db8e8b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Arthritis</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Conditioning</topic><topic>Connective tissues</topic><topic>Culture Media, Conditioned - metabolism</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>fatty acid</topic><topic>Fatty acids</topic><topic>fibroblast</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibronectin</topic><topic>Fibrosis</topic><topic>Genomes</topic><topic>human palatine tonsil‐derived mesenchymal stem cells</topic><topic>Humans</topic><topic>IL‐1Ra</topic><topic>IL‐1β</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin Resistance - physiology</topic><topic>Interleukin 1 Receptor Antagonist Protein - metabolism</topic><topic>Interleukin-1beta - metabolism</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myotubes</topic><topic>Obesity</topic><topic>Original</topic><topic>Palatine Tonsil - metabolism</topic><topic>Palmitic acid</topic><topic>Skeletal muscle</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissues</topic><topic>TLR2 protein</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptors</topic><topic>Tonsil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Kyung‐Ah</creatorcontrib><creatorcontrib>Park, Minhwa</creatorcontrib><creatorcontrib>Kim, Yu‐Hee</creatorcontrib><creatorcontrib>Woo, So‐Youn</creatorcontrib><creatorcontrib>Ryu, Kyung‐Ha</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Kyung‐Ah</au><au>Park, Minhwa</au><au>Kim, Yu‐Hee</au><au>Woo, So‐Youn</au><au>Ryu, Kyung‐Ha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL‐1Ra activity</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2017-01</date><risdate>2017</risdate><volume>21</volume><issue>1</issue><spage>130</spage><epage>141</epage><pages>130-141</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inflammation and subsequent tissue disorders, including fibrosis in skeletal muscle, is limited. FFAs are a natural ligand for toll‐like receptor 2 (TLR2) and TLR4, and induce chronic low‐grade inflammation that directly stimulates skeletal muscle tissue. However, persistent inflammatory stimulation in tissues could induce pro‐fibrogenic processes that ultimately lead to perturbation of the tissue architecture and dysfunction. Therefore, blocking the link between inflammatory primed skeletal muscle tissue and connective tissue might be an efficient therapeutic option for treating obesity‐induced muscle inactivity. In this study, we investigated the impact of conditioned medium obtained from human palatine tonsil‐derived mesenchymal stem cells (T‐MSCs) on the interaction between skeletal muscle cells stimulated with palmitic acid (PA) and fibroblasts. We found that PA‐treated skeletal muscle cells actively secreted interleukin‐1β (IL‐1β) and augmented the migration, proliferation and expression of fibronectin in L929 fibroblasts. Furthermore, T‐CM inhibited the skeletal muscle cell‐derived pro‐fibrogenic effect via the production of the interleukin‐1 receptor antagonist (IL‐1Ra), which is an inhibitor of IL‐1 signalling. Taken together, our data provide novel insights into the therapeutic potential of T‐MSC‐mediated therapy for the treatment of pathophysiological processes that occur in skeletal muscle tissues under chronic inflammatory conditions.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>27619557</pmid><doi>10.1111/jcmm.12947</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3758-4209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2017-01, Vol.21 (1), p.130-141 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5192826 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest); PubMed Central |
subjects | Animals Arthritis Cell Line Cell proliferation Conditioning Connective tissues Culture Media, Conditioned - metabolism Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - metabolism fatty acid Fatty acids fibroblast Fibroblasts Fibroblasts - metabolism Fibronectin Fibrosis Genomes human palatine tonsil‐derived mesenchymal stem cells Humans IL‐1Ra IL‐1β Inflammation Insulin Insulin Resistance - physiology Interleukin 1 Receptor Antagonist Protein - metabolism Interleukin-1beta - metabolism Mesenchymal stem cells Mesenchymal Stromal Cells - metabolism Mesenchyme Mice Muscle Fibers, Skeletal - metabolism Muscle, Skeletal - metabolism Muscles Musculoskeletal system Myotubes Obesity Original Palatine Tonsil - metabolism Palmitic acid Skeletal muscle Stem cells Tissue engineering Tissues TLR2 protein TLR4 protein Toll-Like Receptor 2 - metabolism Toll-like receptors Tonsil |
title | Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL‐1Ra activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditioned%20media%20from%20human%20palatine%20tonsil%20mesenchymal%20stem%20cells%20regulates%20the%20interaction%20between%20myotubes%20and%20fibroblasts%20by%20IL%E2%80%901Ra%20activity&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Cho,%20Kyung%E2%80%90Ah&rft.date=2017-01&rft.volume=21&rft.issue=1&rft.spage=130&rft.epage=141&rft.pages=130-141&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.12947&rft_dat=%3Cproquest_pubme%3E1853352902%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4487-92cbbdb1d61331f86de0c198b8a098f871b6554ac5996c20f0a9237d8db8e8b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289706795&rft_id=info:pmid/27619557&rfr_iscdi=true |