Loading…

A Genetically Encoded Allysine for the Synthesis of Proteins with Site‐Specific Lysine Dimethylation

Using the amber suppression approach, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine, an allysine precursor is genetically encoded in E. coli. Its genetic incorporation followed by two sequential biocompatible reactions allows convenient synthesis of proteins with site‐specific lysine dimethylation....

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2017-01, Vol.56 (1), p.212-216
Main Authors: Wang, Zhipeng A., Zeng, Yu, Kurra, Yadagiri, Wang, Xin, Tharp, Jeffery M., Vatansever, Erol C., Hsu, Willie W., Dai, Susie, Fang, Xinqiang, Liu, Wenshe R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5332-9e9fae0d06eab86a91e03047ac909c6714f784452d83e030c441a113287a28623
cites cdi_FETCH-LOGICAL-c5332-9e9fae0d06eab86a91e03047ac909c6714f784452d83e030c441a113287a28623
container_end_page 216
container_issue 1
container_start_page 212
container_title Angewandte Chemie International Edition
container_volume 56
creator Wang, Zhipeng A.
Zeng, Yu
Kurra, Yadagiri
Wang, Xin
Tharp, Jeffery M.
Vatansever, Erol C.
Hsu, Willie W.
Dai, Susie
Fang, Xinqiang
Liu, Wenshe R.
description Using the amber suppression approach, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine, an allysine precursor is genetically encoded in E. coli. Its genetic incorporation followed by two sequential biocompatible reactions allows convenient synthesis of proteins with site‐specific lysine dimethylation. Using this approach, dimethyl‐histone H3 and p53 proteins have been synthesized and used to probe functions of epigenetic enzymes including histone demethylase LSD1 and histone acetyltransferase Tip60. We confirmed that LSD1 is catalytically active toward H3K4me2 and H3K9me2 but inert toward H3K36me2, and methylation at p53 K372 directly activates Tip60 for its catalyzed acetylation at p53 K120. Expedient protein synthesis: An allysine precursor, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine is genetically encoded in E. coli. Its incorporation followed by Staudinger reduction and reductive amination allows the synthesis of proteins with site‐specific lysine dimethylation.
doi_str_mv 10.1002/anie.201609452
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845817025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5332-9e9fae0d06eab86a91e03047ac909c6714f784452d83e030c441a113287a28623</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqVw5YgsceGywR_rrwtSVEKpFAFS4Gy53lniamOHtdNqb_wEfiO_BEcp4eMAp5nRPPNqXr0IPaVkRglhL10MMGOESmJawe6hUyoYbbhS_H7tW84bpQU9QY9yvq681kQ-RCdMGUoY56eon-MLiFCCd8Mw4UX0qYMOz-uQQwTcpxGXNeDVFGvJIePU4w9jKhBixrehrPEqFPj-9dtqCz70wePl4fJ12EBZT4MrIcXH6EHvhgxP7uoZ-vRm8fH8bbN8f3F5Pl82XnDOGgOmd0A6IsFdaekMBcJJq5w3xHipaNsr3Vajneb7jW9b6ijlTCvHtGT8DL066G53VxvoPMQyusFux7Bx42STC_bPTQxr-zndWMGI1IZXgRd3AmP6soNc7CZkD8PgIqRdtlS3QlNFmKjo87_Q67QbY7VnGWHSUKMY-xdFteBMSSZIpWYHyo8p5xH648uU2H3Qdh-0PQZdD579bvSI_0y2AuYA3IYBpv_I2fm7y8Uv8R_kSbUL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853276250</pqid></control><display><type>article</type><title>A Genetically Encoded Allysine for the Synthesis of Proteins with Site‐Specific Lysine Dimethylation</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Wang, Zhipeng A. ; Zeng, Yu ; Kurra, Yadagiri ; Wang, Xin ; Tharp, Jeffery M. ; Vatansever, Erol C. ; Hsu, Willie W. ; Dai, Susie ; Fang, Xinqiang ; Liu, Wenshe R.</creator><creatorcontrib>Wang, Zhipeng A. ; Zeng, Yu ; Kurra, Yadagiri ; Wang, Xin ; Tharp, Jeffery M. ; Vatansever, Erol C. ; Hsu, Willie W. ; Dai, Susie ; Fang, Xinqiang ; Liu, Wenshe R.</creatorcontrib><description>Using the amber suppression approach, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine, an allysine precursor is genetically encoded in E. coli. Its genetic incorporation followed by two sequential biocompatible reactions allows convenient synthesis of proteins with site‐specific lysine dimethylation. Using this approach, dimethyl‐histone H3 and p53 proteins have been synthesized and used to probe functions of epigenetic enzymes including histone demethylase LSD1 and histone acetyltransferase Tip60. We confirmed that LSD1 is catalytically active toward H3K4me2 and H3K9me2 but inert toward H3K36me2, and methylation at p53 K372 directly activates Tip60 for its catalyzed acetylation at p53 K120. Expedient protein synthesis: An allysine precursor, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine is genetically encoded in E. coli. Its incorporation followed by Staudinger reduction and reductive amination allows the synthesis of proteins with site‐specific lysine dimethylation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201609452</identifier><identifier>PMID: 27910233</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2-Aminoadipic Acid - analogs &amp; derivatives ; 2-Aminoadipic Acid - genetics ; Acetylation ; allysine ; amber suppression ; Biocompatibility ; Chemical synthesis ; dimethyllysine ; E coli ; Escherichia coli - genetics ; Genetic Code ; genetic code expansion ; Histone acetyltransferase ; Histone H3 ; Histones - chemistry ; Histones - genetics ; Humans ; Lysine ; Lysine - analogs &amp; derivatives ; Lysine - chemistry ; Lysine - genetics ; lysine dimethylation ; Methylation ; Models, Molecular ; Mutagenesis, Site-Directed - methods ; p53 Protein ; Protein Processing, Post-Translational ; Proteins ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - genetics</subject><ispartof>Angewandte Chemie International Edition, 2017-01, Vol.56 (1), p.212-216</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5332-9e9fae0d06eab86a91e03047ac909c6714f784452d83e030c441a113287a28623</citedby><cites>FETCH-LOGICAL-c5332-9e9fae0d06eab86a91e03047ac909c6714f784452d83e030c441a113287a28623</cites><orcidid>0000-0002-7078-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27910233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Tharp, Jeffery M.</creatorcontrib><creatorcontrib>Vatansever, Erol C.</creatorcontrib><creatorcontrib>Hsu, Willie W.</creatorcontrib><creatorcontrib>Dai, Susie</creatorcontrib><creatorcontrib>Fang, Xinqiang</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><title>A Genetically Encoded Allysine for the Synthesis of Proteins with Site‐Specific Lysine Dimethylation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Using the amber suppression approach, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine, an allysine precursor is genetically encoded in E. coli. Its genetic incorporation followed by two sequential biocompatible reactions allows convenient synthesis of proteins with site‐specific lysine dimethylation. Using this approach, dimethyl‐histone H3 and p53 proteins have been synthesized and used to probe functions of epigenetic enzymes including histone demethylase LSD1 and histone acetyltransferase Tip60. We confirmed that LSD1 is catalytically active toward H3K4me2 and H3K9me2 but inert toward H3K36me2, and methylation at p53 K372 directly activates Tip60 for its catalyzed acetylation at p53 K120. Expedient protein synthesis: An allysine precursor, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine is genetically encoded in E. coli. Its incorporation followed by Staudinger reduction and reductive amination allows the synthesis of proteins with site‐specific lysine dimethylation.</description><subject>2-Aminoadipic Acid - analogs &amp; derivatives</subject><subject>2-Aminoadipic Acid - genetics</subject><subject>Acetylation</subject><subject>allysine</subject><subject>amber suppression</subject><subject>Biocompatibility</subject><subject>Chemical synthesis</subject><subject>dimethyllysine</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Genetic Code</subject><subject>genetic code expansion</subject><subject>Histone acetyltransferase</subject><subject>Histone H3</subject><subject>Histones - chemistry</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>Lysine</subject><subject>Lysine - analogs &amp; derivatives</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>lysine dimethylation</subject><subject>Methylation</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>p53 Protein</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqVw5YgsceGywR_rrwtSVEKpFAFS4Gy53lniamOHtdNqb_wEfiO_BEcp4eMAp5nRPPNqXr0IPaVkRglhL10MMGOESmJawe6hUyoYbbhS_H7tW84bpQU9QY9yvq681kQ-RCdMGUoY56eon-MLiFCCd8Mw4UX0qYMOz-uQQwTcpxGXNeDVFGvJIePU4w9jKhBixrehrPEqFPj-9dtqCz70wePl4fJ12EBZT4MrIcXH6EHvhgxP7uoZ-vRm8fH8bbN8f3F5Pl82XnDOGgOmd0A6IsFdaekMBcJJq5w3xHipaNsr3Vajneb7jW9b6ijlTCvHtGT8DL066G53VxvoPMQyusFux7Bx42STC_bPTQxr-zndWMGI1IZXgRd3AmP6soNc7CZkD8PgIqRdtlS3QlNFmKjo87_Q67QbY7VnGWHSUKMY-xdFteBMSSZIpWYHyo8p5xH648uU2H3Qdh-0PQZdD579bvSI_0y2AuYA3IYBpv_I2fm7y8Uv8R_kSbUL</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Wang, Zhipeng A.</creator><creator>Zeng, Yu</creator><creator>Kurra, Yadagiri</creator><creator>Wang, Xin</creator><creator>Tharp, Jeffery M.</creator><creator>Vatansever, Erol C.</creator><creator>Hsu, Willie W.</creator><creator>Dai, Susie</creator><creator>Fang, Xinqiang</creator><creator>Liu, Wenshe R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid></search><sort><creationdate>20170102</creationdate><title>A Genetically Encoded Allysine for the Synthesis of Proteins with Site‐Specific Lysine Dimethylation</title><author>Wang, Zhipeng A. ; Zeng, Yu ; Kurra, Yadagiri ; Wang, Xin ; Tharp, Jeffery M. ; Vatansever, Erol C. ; Hsu, Willie W. ; Dai, Susie ; Fang, Xinqiang ; Liu, Wenshe R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5332-9e9fae0d06eab86a91e03047ac909c6714f784452d83e030c441a113287a28623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2-Aminoadipic Acid - analogs &amp; derivatives</topic><topic>2-Aminoadipic Acid - genetics</topic><topic>Acetylation</topic><topic>allysine</topic><topic>amber suppression</topic><topic>Biocompatibility</topic><topic>Chemical synthesis</topic><topic>dimethyllysine</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Genetic Code</topic><topic>genetic code expansion</topic><topic>Histone acetyltransferase</topic><topic>Histone H3</topic><topic>Histones - chemistry</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>Lysine</topic><topic>Lysine - analogs &amp; derivatives</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>lysine dimethylation</topic><topic>Methylation</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>p53 Protein</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Tharp, Jeffery M.</creatorcontrib><creatorcontrib>Vatansever, Erol C.</creatorcontrib><creatorcontrib>Hsu, Willie W.</creatorcontrib><creatorcontrib>Dai, Susie</creatorcontrib><creatorcontrib>Fang, Xinqiang</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhipeng A.</au><au>Zeng, Yu</au><au>Kurra, Yadagiri</au><au>Wang, Xin</au><au>Tharp, Jeffery M.</au><au>Vatansever, Erol C.</au><au>Hsu, Willie W.</au><au>Dai, Susie</au><au>Fang, Xinqiang</au><au>Liu, Wenshe R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Genetically Encoded Allysine for the Synthesis of Proteins with Site‐Specific Lysine Dimethylation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-01-02</date><risdate>2017</risdate><volume>56</volume><issue>1</issue><spage>212</spage><epage>216</epage><pages>212-216</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Using the amber suppression approach, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine, an allysine precursor is genetically encoded in E. coli. Its genetic incorporation followed by two sequential biocompatible reactions allows convenient synthesis of proteins with site‐specific lysine dimethylation. Using this approach, dimethyl‐histone H3 and p53 proteins have been synthesized and used to probe functions of epigenetic enzymes including histone demethylase LSD1 and histone acetyltransferase Tip60. We confirmed that LSD1 is catalytically active toward H3K4me2 and H3K9me2 but inert toward H3K36me2, and methylation at p53 K372 directly activates Tip60 for its catalyzed acetylation at p53 K120. Expedient protein synthesis: An allysine precursor, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine is genetically encoded in E. coli. Its incorporation followed by Staudinger reduction and reductive amination allows the synthesis of proteins with site‐specific lysine dimethylation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27910233</pmid><doi>10.1002/anie.201609452</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-01, Vol.56 (1), p.212-216
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206893
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects 2-Aminoadipic Acid - analogs & derivatives
2-Aminoadipic Acid - genetics
Acetylation
allysine
amber suppression
Biocompatibility
Chemical synthesis
dimethyllysine
E coli
Escherichia coli - genetics
Genetic Code
genetic code expansion
Histone acetyltransferase
Histone H3
Histones - chemistry
Histones - genetics
Humans
Lysine
Lysine - analogs & derivatives
Lysine - chemistry
Lysine - genetics
lysine dimethylation
Methylation
Models, Molecular
Mutagenesis, Site-Directed - methods
p53 Protein
Protein Processing, Post-Translational
Proteins
Tumor Suppressor Protein p53 - chemistry
Tumor Suppressor Protein p53 - genetics
title A Genetically Encoded Allysine for the Synthesis of Proteins with Site‐Specific Lysine Dimethylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Genetically%20Encoded%20Allysine%20for%20the%20Synthesis%20of%20Proteins%20with%20Site%E2%80%90Specific%20Lysine%20Dimethylation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Zhipeng%20A.&rft.date=2017-01-02&rft.volume=56&rft.issue=1&rft.spage=212&rft.epage=216&rft.pages=212-216&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201609452&rft_dat=%3Cproquest_pubme%3E1845817025%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5332-9e9fae0d06eab86a91e03047ac909c6714f784452d83e030c441a113287a28623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1853276250&rft_id=info:pmid/27910233&rfr_iscdi=true