Loading…

Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography

Dynamic contrast‐enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important...

Full description

Saved in:
Bibliographic Details
Published in:NMR in biomedicine 2016-07, Vol.29 (7), p.969-977
Main Authors: Zhang, Jeff L., Conlin, Chris C., Carlston, Kristi, Xie, Luke, Kim, Daniel, Morrell, Glen, Morton, Kathryn, Lee, Vivian S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5463-95d5530dd7c2ff2c77fdbbbcfb9f67fbd2ff84d4f42935f7df3b081762a2de513
cites
container_end_page 977
container_issue 7
container_start_page 969
container_title NMR in biomedicine
container_volume 29
creator Zhang, Jeff L.
Conlin, Chris C.
Carlston, Kristi
Xie, Luke
Kim, Daniel
Morrell, Glen
Morton, Kathryn
Lee, Vivian S.
description Dynamic contrast‐enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast‐enhanced T1‐weighted protocols is the balance of the T1‐shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation‐recovery T1‐weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre‐contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. Copyright © 2016 John Wiley & Sons, Ltd. MR renography was simulated to test the impact of injection dose (D) and time delay (TD, for saturation recovery). High D and TD caused signal saturation, and thus the overestimation of renal plasma flow (RPF), glomerular filtration rate (GFR) and mean transit time of kidney (MTTK). Low TD underestimated arterial input function (AIF) and overestimated RPF and GFR, which was verified with 22 patients. For T1‐weighted saturation‐recovery MR renography at 3 T, a low dose of 3–6 mL is sufficient for precise parameter estimation and, with such a dose, TD should be 300–600 ms.
doi_str_mv 10.1002/nbm.3553
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808648545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5463-95d5530dd7c2ff2c77fdbbbcfb9f67fbd2ff84d4f42935f7df3b081762a2de513</originalsourceid><addsrcrecordid>eNqFkktv1DAQgCMEoktB4hcgS1y4pDiOHccckNoKlkIfCBVV4mI5fuy6JHZqJy3h5_BLcbpleVw4jez59HlmPFn2tIB7BYTopWu6vZKQ8l62KCBjeYEZup8tICMoL3ENd7JHMV5CCGtcoofZDqIIQszYIvtx1g-2s9_FYL0D3oAohjHcnvKgpb_WYQJqcqKzEkjvhiDikGu3Fk5qBU4-HQEhr0Yb7a2gD37w0revQJdYDaQIrQfRdmO7eUH0CRFyDZROREy6IWlu7LAGK6F8a50du6QFQTu_CqJfT4-zB0a0UT-5i7vZ57dvzg_f5cdny6PD_eNcElyVOSMqTQAqRSUyBklKjWqaRpqGmYqaRqXbGitsMGIlMVSZsoF1QSskkNKkKHez1xtvPzadVlLPzba8D7YTYeJeWP53xtk1X_lrThCsGENJ8OJOEPzVqOPAOxulblvhtB8jL2pYV7gmmPwfpYwSjAqGE_r8H_TSj8GlScxUhZMQ0kQ9-7P4bdW_fjoB-Qa4sa2etvkC8nmDeNogPm8QPz04meNv3sZBf9vyInzlFS0p4RenS04_XBx8-Xi-5O_Ln81_zYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796448507</pqid></control><display><type>article</type><title>Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography</title><source>Wiley</source><creator>Zhang, Jeff L. ; Conlin, Chris C. ; Carlston, Kristi ; Xie, Luke ; Kim, Daniel ; Morrell, Glen ; Morton, Kathryn ; Lee, Vivian S.</creator><creatorcontrib>Zhang, Jeff L. ; Conlin, Chris C. ; Carlston, Kristi ; Xie, Luke ; Kim, Daniel ; Morrell, Glen ; Morton, Kathryn ; Lee, Vivian S.</creatorcontrib><description>Dynamic contrast‐enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast‐enhanced T1‐weighted protocols is the balance of the T1‐shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation‐recovery T1‐weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre‐contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. Copyright © 2016 John Wiley &amp; Sons, Ltd. MR renography was simulated to test the impact of injection dose (D) and time delay (TD, for saturation recovery). High D and TD caused signal saturation, and thus the overestimation of renal plasma flow (RPF), glomerular filtration rate (GFR) and mean transit time of kidney (MTTK). Low TD underestimated arterial input function (AIF) and overestimated RPF and GFR, which was verified with 22 patients. For T1‐weighted saturation‐recovery MR renography at 3 T, a low dose of 3–6 mL is sufficient for precise parameter estimation and, with such a dose, TD should be 300–600 ms.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.3553</identifier><identifier>PMID: 27200499</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Computer Simulation ; Contrast Media - pharmacokinetics ; dynamic contrast-enhanced imaging ; Female ; Gadolinium - pharmacokinetics ; glomerular filtration rate ; Glomerular Filtration Rate - physiology ; Heterocyclic Compounds - pharmacokinetics ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Kidney - diagnostic imaging ; Kidney - metabolism ; Magnetic Resonance Imaging - methods ; Male ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; MR renography ; Organometallic Compounds - pharmacokinetics ; Radioisotope Renography - methods ; renal plasma flow ; Reproducibility of Results ; Sensitivity and Specificity ; tracer kinetic modeling</subject><ispartof>NMR in biomedicine, 2016-07, Vol.29 (7), p.969-977</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5463-95d5530dd7c2ff2c77fdbbbcfb9f67fbd2ff84d4f42935f7df3b081762a2de513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27200499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jeff L.</creatorcontrib><creatorcontrib>Conlin, Chris C.</creatorcontrib><creatorcontrib>Carlston, Kristi</creatorcontrib><creatorcontrib>Xie, Luke</creatorcontrib><creatorcontrib>Kim, Daniel</creatorcontrib><creatorcontrib>Morrell, Glen</creatorcontrib><creatorcontrib>Morton, Kathryn</creatorcontrib><creatorcontrib>Lee, Vivian S.</creatorcontrib><title>Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>Dynamic contrast‐enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast‐enhanced T1‐weighted protocols is the balance of the T1‐shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation‐recovery T1‐weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre‐contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. Copyright © 2016 John Wiley &amp; Sons, Ltd. MR renography was simulated to test the impact of injection dose (D) and time delay (TD, for saturation recovery). High D and TD caused signal saturation, and thus the overestimation of renal plasma flow (RPF), glomerular filtration rate (GFR) and mean transit time of kidney (MTTK). Low TD underestimated arterial input function (AIF) and overestimated RPF and GFR, which was verified with 22 patients. For T1‐weighted saturation‐recovery MR renography at 3 T, a low dose of 3–6 mL is sufficient for precise parameter estimation and, with such a dose, TD should be 300–600 ms.</description><subject>Computer Simulation</subject><subject>Contrast Media - pharmacokinetics</subject><subject>dynamic contrast-enhanced imaging</subject><subject>Female</subject><subject>Gadolinium - pharmacokinetics</subject><subject>glomerular filtration rate</subject><subject>Glomerular Filtration Rate - physiology</subject><subject>Heterocyclic Compounds - pharmacokinetics</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Kidney - diagnostic imaging</subject><subject>Kidney - metabolism</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>MR renography</subject><subject>Organometallic Compounds - pharmacokinetics</subject><subject>Radioisotope Renography - methods</subject><subject>renal plasma flow</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>tracer kinetic modeling</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkktv1DAQgCMEoktB4hcgS1y4pDiOHccckNoKlkIfCBVV4mI5fuy6JHZqJy3h5_BLcbpleVw4jez59HlmPFn2tIB7BYTopWu6vZKQ8l62KCBjeYEZup8tICMoL3ENd7JHMV5CCGtcoofZDqIIQszYIvtx1g-2s9_FYL0D3oAohjHcnvKgpb_WYQJqcqKzEkjvhiDikGu3Fk5qBU4-HQEhr0Yb7a2gD37w0revQJdYDaQIrQfRdmO7eUH0CRFyDZROREy6IWlu7LAGK6F8a50du6QFQTu_CqJfT4-zB0a0UT-5i7vZ57dvzg_f5cdny6PD_eNcElyVOSMqTQAqRSUyBklKjWqaRpqGmYqaRqXbGitsMGIlMVSZsoF1QSskkNKkKHez1xtvPzadVlLPzba8D7YTYeJeWP53xtk1X_lrThCsGENJ8OJOEPzVqOPAOxulblvhtB8jL2pYV7gmmPwfpYwSjAqGE_r8H_TSj8GlScxUhZMQ0kQ9-7P4bdW_fjoB-Qa4sa2etvkC8nmDeNogPm8QPz04meNv3sZBf9vyInzlFS0p4RenS04_XBx8-Xi-5O_Ln81_zYk</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Zhang, Jeff L.</creator><creator>Conlin, Chris C.</creator><creator>Carlston, Kristi</creator><creator>Xie, Luke</creator><creator>Kim, Daniel</creator><creator>Morrell, Glen</creator><creator>Morton, Kathryn</creator><creator>Lee, Vivian S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201607</creationdate><title>Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography</title><author>Zhang, Jeff L. ; Conlin, Chris C. ; Carlston, Kristi ; Xie, Luke ; Kim, Daniel ; Morrell, Glen ; Morton, Kathryn ; Lee, Vivian S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5463-95d5530dd7c2ff2c77fdbbbcfb9f67fbd2ff84d4f42935f7df3b081762a2de513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Simulation</topic><topic>Contrast Media - pharmacokinetics</topic><topic>dynamic contrast-enhanced imaging</topic><topic>Female</topic><topic>Gadolinium - pharmacokinetics</topic><topic>glomerular filtration rate</topic><topic>Glomerular Filtration Rate - physiology</topic><topic>Heterocyclic Compounds - pharmacokinetics</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Kidney - diagnostic imaging</topic><topic>Kidney - metabolism</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>MR renography</topic><topic>Organometallic Compounds - pharmacokinetics</topic><topic>Radioisotope Renography - methods</topic><topic>renal plasma flow</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>tracer kinetic modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jeff L.</creatorcontrib><creatorcontrib>Conlin, Chris C.</creatorcontrib><creatorcontrib>Carlston, Kristi</creatorcontrib><creatorcontrib>Xie, Luke</creatorcontrib><creatorcontrib>Kim, Daniel</creatorcontrib><creatorcontrib>Morrell, Glen</creatorcontrib><creatorcontrib>Morton, Kathryn</creatorcontrib><creatorcontrib>Lee, Vivian S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jeff L.</au><au>Conlin, Chris C.</au><au>Carlston, Kristi</au><au>Xie, Luke</au><au>Kim, Daniel</au><au>Morrell, Glen</au><au>Morton, Kathryn</au><au>Lee, Vivian S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2016-07</date><risdate>2016</risdate><volume>29</volume><issue>7</issue><spage>969</spage><epage>977</epage><pages>969-977</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>Dynamic contrast‐enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast‐enhanced T1‐weighted protocols is the balance of the T1‐shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation‐recovery T1‐weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre‐contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. Copyright © 2016 John Wiley &amp; Sons, Ltd. MR renography was simulated to test the impact of injection dose (D) and time delay (TD, for saturation recovery). High D and TD caused signal saturation, and thus the overestimation of renal plasma flow (RPF), glomerular filtration rate (GFR) and mean transit time of kidney (MTTK). Low TD underestimated arterial input function (AIF) and overestimated RPF and GFR, which was verified with 22 patients. For T1‐weighted saturation‐recovery MR renography at 3 T, a low dose of 3–6 mL is sufficient for precise parameter estimation and, with such a dose, TD should be 300–600 ms.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27200499</pmid><doi>10.1002/nbm.3553</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2016-07, Vol.29 (7), p.969-977
issn 0952-3480
1099-1492
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206992
source Wiley
subjects Computer Simulation
Contrast Media - pharmacokinetics
dynamic contrast-enhanced imaging
Female
Gadolinium - pharmacokinetics
glomerular filtration rate
Glomerular Filtration Rate - physiology
Heterocyclic Compounds - pharmacokinetics
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Kidney - diagnostic imaging
Kidney - metabolism
Magnetic Resonance Imaging - methods
Male
Models, Biological
Models, Statistical
Monte Carlo Method
MR renography
Organometallic Compounds - pharmacokinetics
Radioisotope Renography - methods
renal plasma flow
Reproducibility of Results
Sensitivity and Specificity
tracer kinetic modeling
title Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20saturation-recovery%20dynamic%20contrast-enhanced%20MRI%20acquisition%20protocol:%20monte%20carlo%20simulation%20approach%20demonstrated%20with%20gadolinium%20MR%20renography&rft.jtitle=NMR%20in%20biomedicine&rft.au=Zhang,%20Jeff%20L.&rft.date=2016-07&rft.volume=29&rft.issue=7&rft.spage=969&rft.epage=977&rft.pages=969-977&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.3553&rft_dat=%3Cproquest_pubme%3E1808648545%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5463-95d5530dd7c2ff2c77fdbbbcfb9f67fbd2ff84d4f42935f7df3b081762a2de513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1796448507&rft_id=info:pmid/27200499&rfr_iscdi=true