Loading…

Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease

The bacterium Xenorhabdus nematophila is a mutualist of Steinernema carpocapsae nematodes and a pathogen of insects. Presently, it is not known what nutrients the bacterium uses to thrive in these host environments. In other symbiotic bacteria, oligopeptide permeases have been shown to be important...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 2004-09, Vol.70 (9), p.5621-5627
Main Authors: Orchard, S.S, Goodrich-Blair, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-5d8276ea9ebb6de643b2443cfc282eb6bcaf62fce343c16d6eb3f1f8e8de01903
cites cdi_FETCH-LOGICAL-c550t-5d8276ea9ebb6de643b2443cfc282eb6bcaf62fce343c16d6eb3f1f8e8de01903
container_end_page 5627
container_issue 9
container_start_page 5621
container_title Applied and Environmental Microbiology
container_volume 70
creator Orchard, S.S
Goodrich-Blair, H
description The bacterium Xenorhabdus nematophila is a mutualist of Steinernema carpocapsae nematodes and a pathogen of insects. Presently, it is not known what nutrients the bacterium uses to thrive in these host environments. In other symbiotic bacteria, oligopeptide permeases have been shown to be important in host interactions, and we therefore sought to determine if oligopeptide uptake is essential for growth or symbiotic functions of X. nematophila in laboratory or host environments. We identified an X. nematophila oligopeptide permease (opp) operon of two sequential oppA genes, predicted to encode oligopeptide-binding proteins, and putative permease-encoding genes oppB, oppC, oppD, and oppF. Peptide-feeding studies indicated that this opp operon encodes a functional oligopeptide permease. We constructed strains with mutations in oppA1, oppA2, or oppB and examined the ability of each mutant strain to grow in a peptide-rich laboratory medium and to interact with the two hosts. We found that the opp mutant strains had altered growth phenotypes in the laboratory medium and in hemolymph isolated from larval insects. However, the opp mutant strains were capable of initiating and maintaining both mutualistic and pathogenic host interactions. These data demonstrate that the opp genes allow X. nematophila to utilize peptides as a nutrient source but that this function is not essential for the existence of X. nematophila in either of its host niches. To our knowledge, this study represents the first experimental analysis of the role of oligopeptide transport in mediating a mutualistic invertebrate-bacterium interaction.
doi_str_mv 10.1128/AEM.70.9.5621-5627.2004
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_520880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17731296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-5d8276ea9ebb6de643b2443cfc282eb6bcaf62fce343c16d6eb3f1f8e8de01903</originalsourceid><addsrcrecordid>eNqFkk-P1CAYxonRuOPoV3Crid46Ai3QHvaw2ay6yRoPuok38pa-TNm0pUKr0U8vzUwc9eIFAu_vef_wQMg5ozvGePXm8vrDTtFdvROSszwtascpLR-QDaN1lYuikA_JhtK6zjkv6Rl5EuM9TQSV1WNyxkRRilKwDYGbFsfZWWdgdn7MYGwzu4xmPUCfmQ4CmBmD-3mIe5tB9gVHHzpo2iVmIw4w-6lzPWS-d3s_4TS7FrMJw4AQ8Sl5ZKGP-Oy4b8nd2-vPV-_z24_vbq4ub3MjBJ1z0VZcSYQam0a2KMui4WVZGGt4xbGRjQEruTVYpEsmW4lNYZmtsGqRspoWW3JxyDstzYCtSWMF6PUU3ADhh_bg9N-R0XV6779pwWlVrfrXR33wXxeMsx5cNNj3MKJfopayKlMr4r8gU6pgvJYJfPkPeO-XkJ41ak5FLUqu1rLqAJngYwxof3fMqF691slrraiu9er1uii9ep2Uz_8c-KQ7mpuAV0cAooHeBhiNiydO0pquzW7JiwPXuX333QXUEAcNOJzKJub8wFjwGvYh5bn7xCkr0h8TSom6-AWswsn0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205954270</pqid></control><display><type>article</type><title>Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease</title><source>PMC (PubMed Central)</source><source>American Society for Microbiology Journals</source><creator>Orchard, S.S ; Goodrich-Blair, H</creator><creatorcontrib>Orchard, S.S ; Goodrich-Blair, H</creatorcontrib><description>The bacterium Xenorhabdus nematophila is a mutualist of Steinernema carpocapsae nematodes and a pathogen of insects. Presently, it is not known what nutrients the bacterium uses to thrive in these host environments. In other symbiotic bacteria, oligopeptide permeases have been shown to be important in host interactions, and we therefore sought to determine if oligopeptide uptake is essential for growth or symbiotic functions of X. nematophila in laboratory or host environments. We identified an X. nematophila oligopeptide permease (opp) operon of two sequential oppA genes, predicted to encode oligopeptide-binding proteins, and putative permease-encoding genes oppB, oppC, oppD, and oppF. Peptide-feeding studies indicated that this opp operon encodes a functional oligopeptide permease. We constructed strains with mutations in oppA1, oppA2, or oppB and examined the ability of each mutant strain to grow in a peptide-rich laboratory medium and to interact with the two hosts. We found that the opp mutant strains had altered growth phenotypes in the laboratory medium and in hemolymph isolated from larval insects. However, the opp mutant strains were capable of initiating and maintaining both mutualistic and pathogenic host interactions. These data demonstrate that the opp genes allow X. nematophila to utilize peptides as a nutrient source but that this function is not essential for the existence of X. nematophila in either of its host niches. To our knowledge, this study represents the first experimental analysis of the role of oligopeptide transport in mediating a mutualistic invertebrate-bacterium interaction.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.70.9.5621-5627.2004</identifier><identifier>PMID: 15345451</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>ABC transporters ; Bacteria ; bacterial proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - isolation &amp; purification ; Bacterial Proteins - metabolism ; Bacteriology ; binding proteins ; Biological and medical sciences ; Cloning, Molecular ; Conjugation, Genetic - genetics ; entomopathogenic bacteria ; Enzymes ; Enzymology and Protein Engineering ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; genes ; hemolymph ; Insects ; leuA gene ; leuB gene ; loci ; Manduca sexta ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - isolation &amp; purification ; Membrane Transport Proteins - metabolism ; Metabolism. Enzymes ; microbial growth ; Microbiology ; Molecular Sequence Data ; mutants ; nucleotide sequences ; oligopeptide-binding proteins ; oligopeptides ; Operon - genetics ; opp genes ; opp loci ; Pathogens ; Peptides ; Plasmids - genetics ; Steinernema carpocapsae ; Xenorhabdus - enzymology ; Xenorhabdus - genetics ; Xenorhabdus nematophila</subject><ispartof>Applied and Environmental Microbiology, 2004-09, Vol.70 (9), p.5621-5627</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Sep 2004</rights><rights>Copyright © 2004, American Society for Microbiology 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-5d8276ea9ebb6de643b2443cfc282eb6bcaf62fce343c16d6eb3f1f8e8de01903</citedby><cites>FETCH-LOGICAL-c550t-5d8276ea9ebb6de643b2443cfc282eb6bcaf62fce343c16d6eb3f1f8e8de01903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC520880/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC520880/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,3175,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16090177$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15345451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orchard, S.S</creatorcontrib><creatorcontrib>Goodrich-Blair, H</creatorcontrib><title>Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The bacterium Xenorhabdus nematophila is a mutualist of Steinernema carpocapsae nematodes and a pathogen of insects. Presently, it is not known what nutrients the bacterium uses to thrive in these host environments. In other symbiotic bacteria, oligopeptide permeases have been shown to be important in host interactions, and we therefore sought to determine if oligopeptide uptake is essential for growth or symbiotic functions of X. nematophila in laboratory or host environments. We identified an X. nematophila oligopeptide permease (opp) operon of two sequential oppA genes, predicted to encode oligopeptide-binding proteins, and putative permease-encoding genes oppB, oppC, oppD, and oppF. Peptide-feeding studies indicated that this opp operon encodes a functional oligopeptide permease. We constructed strains with mutations in oppA1, oppA2, or oppB and examined the ability of each mutant strain to grow in a peptide-rich laboratory medium and to interact with the two hosts. We found that the opp mutant strains had altered growth phenotypes in the laboratory medium and in hemolymph isolated from larval insects. However, the opp mutant strains were capable of initiating and maintaining both mutualistic and pathogenic host interactions. These data demonstrate that the opp genes allow X. nematophila to utilize peptides as a nutrient source but that this function is not essential for the existence of X. nematophila in either of its host niches. To our knowledge, this study represents the first experimental analysis of the role of oligopeptide transport in mediating a mutualistic invertebrate-bacterium interaction.</description><subject>ABC transporters</subject><subject>Bacteria</subject><subject>bacterial proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - isolation &amp; purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>binding proteins</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>Conjugation, Genetic - genetics</subject><subject>entomopathogenic bacteria</subject><subject>Enzymes</subject><subject>Enzymology and Protein Engineering</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genes</subject><subject>hemolymph</subject><subject>Insects</subject><subject>leuA gene</subject><subject>leuB gene</subject><subject>loci</subject><subject>Manduca sexta</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - isolation &amp; purification</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolism. Enzymes</subject><subject>microbial growth</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>nucleotide sequences</subject><subject>oligopeptide-binding proteins</subject><subject>oligopeptides</subject><subject>Operon - genetics</subject><subject>opp genes</subject><subject>opp loci</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Plasmids - genetics</subject><subject>Steinernema carpocapsae</subject><subject>Xenorhabdus - enzymology</subject><subject>Xenorhabdus - genetics</subject><subject>Xenorhabdus nematophila</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkk-P1CAYxonRuOPoV3Crid46Ai3QHvaw2ay6yRoPuok38pa-TNm0pUKr0U8vzUwc9eIFAu_vef_wQMg5ozvGePXm8vrDTtFdvROSszwtascpLR-QDaN1lYuikA_JhtK6zjkv6Rl5EuM9TQSV1WNyxkRRilKwDYGbFsfZWWdgdn7MYGwzu4xmPUCfmQ4CmBmD-3mIe5tB9gVHHzpo2iVmIw4w-6lzPWS-d3s_4TS7FrMJw4AQ8Sl5ZKGP-Oy4b8nd2-vPV-_z24_vbq4ub3MjBJ1z0VZcSYQam0a2KMui4WVZGGt4xbGRjQEruTVYpEsmW4lNYZmtsGqRspoWW3JxyDstzYCtSWMF6PUU3ADhh_bg9N-R0XV6779pwWlVrfrXR33wXxeMsx5cNNj3MKJfopayKlMr4r8gU6pgvJYJfPkPeO-XkJ41ak5FLUqu1rLqAJngYwxof3fMqF691slrraiu9er1uii9ep2Uz_8c-KQ7mpuAV0cAooHeBhiNiydO0pquzW7JiwPXuX333QXUEAcNOJzKJub8wFjwGvYh5bn7xCkr0h8TSom6-AWswsn0</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Orchard, S.S</creator><creator>Goodrich-Blair, H</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040901</creationdate><title>Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease</title><author>Orchard, S.S ; Goodrich-Blair, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-5d8276ea9ebb6de643b2443cfc282eb6bcaf62fce343c16d6eb3f1f8e8de01903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ABC transporters</topic><topic>Bacteria</topic><topic>bacterial proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - isolation &amp; purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>binding proteins</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>Conjugation, Genetic - genetics</topic><topic>entomopathogenic bacteria</topic><topic>Enzymes</topic><topic>Enzymology and Protein Engineering</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genes</topic><topic>hemolymph</topic><topic>Insects</topic><topic>leuA gene</topic><topic>leuB gene</topic><topic>loci</topic><topic>Manduca sexta</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - isolation &amp; purification</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolism. Enzymes</topic><topic>microbial growth</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>nucleotide sequences</topic><topic>oligopeptide-binding proteins</topic><topic>oligopeptides</topic><topic>Operon - genetics</topic><topic>opp genes</topic><topic>opp loci</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Plasmids - genetics</topic><topic>Steinernema carpocapsae</topic><topic>Xenorhabdus - enzymology</topic><topic>Xenorhabdus - genetics</topic><topic>Xenorhabdus nematophila</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orchard, S.S</creatorcontrib><creatorcontrib>Goodrich-Blair, H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orchard, S.S</au><au>Goodrich-Blair, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>70</volume><issue>9</issue><spage>5621</spage><epage>5627</epage><pages>5621-5627</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>The bacterium Xenorhabdus nematophila is a mutualist of Steinernema carpocapsae nematodes and a pathogen of insects. Presently, it is not known what nutrients the bacterium uses to thrive in these host environments. In other symbiotic bacteria, oligopeptide permeases have been shown to be important in host interactions, and we therefore sought to determine if oligopeptide uptake is essential for growth or symbiotic functions of X. nematophila in laboratory or host environments. We identified an X. nematophila oligopeptide permease (opp) operon of two sequential oppA genes, predicted to encode oligopeptide-binding proteins, and putative permease-encoding genes oppB, oppC, oppD, and oppF. Peptide-feeding studies indicated that this opp operon encodes a functional oligopeptide permease. We constructed strains with mutations in oppA1, oppA2, or oppB and examined the ability of each mutant strain to grow in a peptide-rich laboratory medium and to interact with the two hosts. We found that the opp mutant strains had altered growth phenotypes in the laboratory medium and in hemolymph isolated from larval insects. However, the opp mutant strains were capable of initiating and maintaining both mutualistic and pathogenic host interactions. These data demonstrate that the opp genes allow X. nematophila to utilize peptides as a nutrient source but that this function is not essential for the existence of X. nematophila in either of its host niches. To our knowledge, this study represents the first experimental analysis of the role of oligopeptide transport in mediating a mutualistic invertebrate-bacterium interaction.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>15345451</pmid><doi>10.1128/AEM.70.9.5621-5627.2004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2004-09, Vol.70 (9), p.5621-5627
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_520880
source PMC (PubMed Central); American Society for Microbiology Journals
subjects ABC transporters
Bacteria
bacterial proteins
Bacterial Proteins - genetics
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Bacteriology
binding proteins
Biological and medical sciences
Cloning, Molecular
Conjugation, Genetic - genetics
entomopathogenic bacteria
Enzymes
Enzymology and Protein Engineering
Escherichia coli - enzymology
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
genes
hemolymph
Insects
leuA gene
leuB gene
loci
Manduca sexta
Membrane Transport Proteins - genetics
Membrane Transport Proteins - isolation & purification
Membrane Transport Proteins - metabolism
Metabolism. Enzymes
microbial growth
Microbiology
Molecular Sequence Data
mutants
nucleotide sequences
oligopeptide-binding proteins
oligopeptides
Operon - genetics
opp genes
opp loci
Pathogens
Peptides
Plasmids - genetics
Steinernema carpocapsae
Xenorhabdus - enzymology
Xenorhabdus - genetics
Xenorhabdus nematophila
title Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20functional%20characterization%20of%20a%20Xenorhabdus%20nematophila%20oligopeptide%20permease&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Orchard,%20S.S&rft.date=2004-09-01&rft.volume=70&rft.issue=9&rft.spage=5621&rft.epage=5627&rft.pages=5621-5627&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.70.9.5621-5627.2004&rft_dat=%3Cproquest_pubme%3E17731296%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-5d8276ea9ebb6de643b2443cfc282eb6bcaf62fce343c16d6eb3f1f8e8de01903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205954270&rft_id=info:pmid/15345451&rfr_iscdi=true