Loading…

Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking

Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2016-11, Vol.27 (22), p.3616-3626
Main Authors: Saha, Tanumoy, Rathmann, Isabel, Viplav, Abhiyan, Panzade, Sadhana, Begemann, Isabell, Rasch, Christiane, Klingauf, Jürgen, Matis, Maja, Galic, Milos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3
cites cdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3
container_end_page 3626
container_issue 22
container_start_page 3616
container_title Molecular biology of the cell
container_volume 27
creator Saha, Tanumoy
Rathmann, Isabel
Viplav, Abhiyan
Panzade, Sadhana
Begemann, Isabell
Rasch, Christiane
Klingauf, Jürgen
Matis, Maja
Galic, Milos
description Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.
doi_str_mv 10.1091/mbc.E16-06-0406
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5221593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836728309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</originalsourceid><addsrcrecordid>eNpVUc9LHTEQDlJRq557Kzn2sprJr00uBRG1guBFzyEvm30vNptsN3kP3n_flGelhWFmmO-bbwY-hL4AuQKi4Xpauas7kB1pwYk8Qmegme64UPJT64nQHQjKT9HnUt4IAc5lf4JOaS-Y4FSdoflmW_Nkqx-wTTbuSyg4j3gMMc95CDbi6NO6bho64DLb2kZxjxdfcty1pXnJ1YeEXU7Op7o0Qk54Fyy2g51r2HlcNnb2uEHuZ0jrC3Q82lj85Xs9R6_3dy-3P7qn54fH25unznGma-fc0AMwITTnZCC91qMQaiUs12QFWoJSdOytAhBAuWupd2qkUigrR6cHdo6-H3Tn7Wryw-G5aOYlTHbZm2yD-R9JYWPWeWcEpSA0awLf3gWW_GvrSzVTKM7HaJPP22JAMdlTxYhu1OsD1S25lMWPH2eAmD8-meaT8SANadF8ahtf__3ug__XGPYbpb2RmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836728309</pqid></control><display><type>article</type><title>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</title><source>PubMed Central</source><creator>Saha, Tanumoy ; Rathmann, Isabel ; Viplav, Abhiyan ; Panzade, Sadhana ; Begemann, Isabell ; Rasch, Christiane ; Klingauf, Jürgen ; Matis, Maja ; Galic, Milos</creator><contributor>Mogilner, Alex</contributor><creatorcontrib>Saha, Tanumoy ; Rathmann, Isabel ; Viplav, Abhiyan ; Panzade, Sadhana ; Begemann, Isabell ; Rasch, Christiane ; Klingauf, Jürgen ; Matis, Maja ; Galic, Milos ; Mogilner, Alex</creatorcontrib><description>Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E16-06-0406</identifier><identifier>PMID: 27535428</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Actins - metabolism ; Algorithms ; Cell Shape - physiology ; Computer Simulation ; Image Processing, Computer-Assisted - methods ; Pseudopodia - metabolism ; Pseudopodia - physiology ; Software ; Spatio-Temporal Analysis ; Statistics as Topic - methods</subject><ispartof>Molecular biology of the cell, 2016-11, Vol.27 (22), p.3616-3626</ispartof><rights>2016 Saha et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2016 Saha This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</citedby><cites>FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221593/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221593/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27535428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mogilner, Alex</contributor><creatorcontrib>Saha, Tanumoy</creatorcontrib><creatorcontrib>Rathmann, Isabel</creatorcontrib><creatorcontrib>Viplav, Abhiyan</creatorcontrib><creatorcontrib>Panzade, Sadhana</creatorcontrib><creatorcontrib>Begemann, Isabell</creatorcontrib><creatorcontrib>Rasch, Christiane</creatorcontrib><creatorcontrib>Klingauf, Jürgen</creatorcontrib><creatorcontrib>Matis, Maja</creatorcontrib><creatorcontrib>Galic, Milos</creatorcontrib><title>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.</description><subject>Actins - metabolism</subject><subject>Algorithms</subject><subject>Cell Shape - physiology</subject><subject>Computer Simulation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Pseudopodia - metabolism</subject><subject>Pseudopodia - physiology</subject><subject>Software</subject><subject>Spatio-Temporal Analysis</subject><subject>Statistics as Topic - methods</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVUc9LHTEQDlJRq557Kzn2sprJr00uBRG1guBFzyEvm30vNptsN3kP3n_flGelhWFmmO-bbwY-hL4AuQKi4Xpauas7kB1pwYk8Qmegme64UPJT64nQHQjKT9HnUt4IAc5lf4JOaS-Y4FSdoflmW_Nkqx-wTTbuSyg4j3gMMc95CDbi6NO6bho64DLb2kZxjxdfcty1pXnJ1YeEXU7Op7o0Qk54Fyy2g51r2HlcNnb2uEHuZ0jrC3Q82lj85Xs9R6_3dy-3P7qn54fH25unznGma-fc0AMwITTnZCC91qMQaiUs12QFWoJSdOytAhBAuWupd2qkUigrR6cHdo6-H3Tn7Wryw-G5aOYlTHbZm2yD-R9JYWPWeWcEpSA0awLf3gWW_GvrSzVTKM7HaJPP22JAMdlTxYhu1OsD1S25lMWPH2eAmD8-meaT8SANadF8ahtf__3ug__XGPYbpb2RmA</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Saha, Tanumoy</creator><creator>Rathmann, Isabel</creator><creator>Viplav, Abhiyan</creator><creator>Panzade, Sadhana</creator><creator>Begemann, Isabell</creator><creator>Rasch, Christiane</creator><creator>Klingauf, Jürgen</creator><creator>Matis, Maja</creator><creator>Galic, Milos</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161107</creationdate><title>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</title><author>Saha, Tanumoy ; Rathmann, Isabel ; Viplav, Abhiyan ; Panzade, Sadhana ; Begemann, Isabell ; Rasch, Christiane ; Klingauf, Jürgen ; Matis, Maja ; Galic, Milos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actins - metabolism</topic><topic>Algorithms</topic><topic>Cell Shape - physiology</topic><topic>Computer Simulation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Pseudopodia - metabolism</topic><topic>Pseudopodia - physiology</topic><topic>Software</topic><topic>Spatio-Temporal Analysis</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Tanumoy</creatorcontrib><creatorcontrib>Rathmann, Isabel</creatorcontrib><creatorcontrib>Viplav, Abhiyan</creatorcontrib><creatorcontrib>Panzade, Sadhana</creatorcontrib><creatorcontrib>Begemann, Isabell</creatorcontrib><creatorcontrib>Rasch, Christiane</creatorcontrib><creatorcontrib>Klingauf, Jürgen</creatorcontrib><creatorcontrib>Matis, Maja</creatorcontrib><creatorcontrib>Galic, Milos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Tanumoy</au><au>Rathmann, Isabel</au><au>Viplav, Abhiyan</au><au>Panzade, Sadhana</au><au>Begemann, Isabell</au><au>Rasch, Christiane</au><au>Klingauf, Jürgen</au><au>Matis, Maja</au><au>Galic, Milos</au><au>Mogilner, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2016-11-07</date><risdate>2016</risdate><volume>27</volume><issue>22</issue><spage>3616</spage><epage>3626</epage><pages>3616-3626</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>27535428</pmid><doi>10.1091/mbc.E16-06-0406</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2016-11, Vol.27 (22), p.3616-3626
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5221593
source PubMed Central
subjects Actins - metabolism
Algorithms
Cell Shape - physiology
Computer Simulation
Image Processing, Computer-Assisted - methods
Pseudopodia - metabolism
Pseudopodia - physiology
Software
Spatio-Temporal Analysis
Statistics as Topic - methods
title Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20analysis%20of%20filopodial%20length%20and%20spatially%20resolved%20protein%20concentration%20via%20adaptive%20shape%20tracking&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Saha,%20Tanumoy&rft.date=2016-11-07&rft.volume=27&rft.issue=22&rft.spage=3616&rft.epage=3626&rft.pages=3616-3626&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E16-06-0406&rft_dat=%3Cproquest_pubme%3E1836728309%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836728309&rft_id=info:pmid/27535428&rfr_iscdi=true