Loading…
Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking
Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract...
Saved in:
Published in: | Molecular biology of the cell 2016-11, Vol.27 (22), p.3616-3626 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3 |
container_end_page | 3626 |
container_issue | 22 |
container_start_page | 3616 |
container_title | Molecular biology of the cell |
container_volume | 27 |
creator | Saha, Tanumoy Rathmann, Isabel Viplav, Abhiyan Panzade, Sadhana Begemann, Isabell Rasch, Christiane Klingauf, Jürgen Matis, Maja Galic, Milos |
description | Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling. |
doi_str_mv | 10.1091/mbc.E16-06-0406 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5221593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836728309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</originalsourceid><addsrcrecordid>eNpVUc9LHTEQDlJRq557Kzn2sprJr00uBRG1guBFzyEvm30vNptsN3kP3n_flGelhWFmmO-bbwY-hL4AuQKi4Xpauas7kB1pwYk8Qmegme64UPJT64nQHQjKT9HnUt4IAc5lf4JOaS-Y4FSdoflmW_Nkqx-wTTbuSyg4j3gMMc95CDbi6NO6bho64DLb2kZxjxdfcty1pXnJ1YeEXU7Op7o0Qk54Fyy2g51r2HlcNnb2uEHuZ0jrC3Q82lj85Xs9R6_3dy-3P7qn54fH25unznGma-fc0AMwITTnZCC91qMQaiUs12QFWoJSdOytAhBAuWupd2qkUigrR6cHdo6-H3Tn7Wryw-G5aOYlTHbZm2yD-R9JYWPWeWcEpSA0awLf3gWW_GvrSzVTKM7HaJPP22JAMdlTxYhu1OsD1S25lMWPH2eAmD8-meaT8SANadF8ahtf__3ug__XGPYbpb2RmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836728309</pqid></control><display><type>article</type><title>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</title><source>PubMed Central</source><creator>Saha, Tanumoy ; Rathmann, Isabel ; Viplav, Abhiyan ; Panzade, Sadhana ; Begemann, Isabell ; Rasch, Christiane ; Klingauf, Jürgen ; Matis, Maja ; Galic, Milos</creator><contributor>Mogilner, Alex</contributor><creatorcontrib>Saha, Tanumoy ; Rathmann, Isabel ; Viplav, Abhiyan ; Panzade, Sadhana ; Begemann, Isabell ; Rasch, Christiane ; Klingauf, Jürgen ; Matis, Maja ; Galic, Milos ; Mogilner, Alex</creatorcontrib><description>Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E16-06-0406</identifier><identifier>PMID: 27535428</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Actins - metabolism ; Algorithms ; Cell Shape - physiology ; Computer Simulation ; Image Processing, Computer-Assisted - methods ; Pseudopodia - metabolism ; Pseudopodia - physiology ; Software ; Spatio-Temporal Analysis ; Statistics as Topic - methods</subject><ispartof>Molecular biology of the cell, 2016-11, Vol.27 (22), p.3616-3626</ispartof><rights>2016 Saha et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2016 Saha This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</citedby><cites>FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221593/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221593/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27535428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mogilner, Alex</contributor><creatorcontrib>Saha, Tanumoy</creatorcontrib><creatorcontrib>Rathmann, Isabel</creatorcontrib><creatorcontrib>Viplav, Abhiyan</creatorcontrib><creatorcontrib>Panzade, Sadhana</creatorcontrib><creatorcontrib>Begemann, Isabell</creatorcontrib><creatorcontrib>Rasch, Christiane</creatorcontrib><creatorcontrib>Klingauf, Jürgen</creatorcontrib><creatorcontrib>Matis, Maja</creatorcontrib><creatorcontrib>Galic, Milos</creatorcontrib><title>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.</description><subject>Actins - metabolism</subject><subject>Algorithms</subject><subject>Cell Shape - physiology</subject><subject>Computer Simulation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Pseudopodia - metabolism</subject><subject>Pseudopodia - physiology</subject><subject>Software</subject><subject>Spatio-Temporal Analysis</subject><subject>Statistics as Topic - methods</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVUc9LHTEQDlJRq557Kzn2sprJr00uBRG1guBFzyEvm30vNptsN3kP3n_flGelhWFmmO-bbwY-hL4AuQKi4Xpauas7kB1pwYk8Qmegme64UPJT64nQHQjKT9HnUt4IAc5lf4JOaS-Y4FSdoflmW_Nkqx-wTTbuSyg4j3gMMc95CDbi6NO6bho64DLb2kZxjxdfcty1pXnJ1YeEXU7Op7o0Qk54Fyy2g51r2HlcNnb2uEHuZ0jrC3Q82lj85Xs9R6_3dy-3P7qn54fH25unznGma-fc0AMwITTnZCC91qMQaiUs12QFWoJSdOytAhBAuWupd2qkUigrR6cHdo6-H3Tn7Wryw-G5aOYlTHbZm2yD-R9JYWPWeWcEpSA0awLf3gWW_GvrSzVTKM7HaJPP22JAMdlTxYhu1OsD1S25lMWPH2eAmD8-meaT8SANadF8ahtf__3ug__XGPYbpb2RmA</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Saha, Tanumoy</creator><creator>Rathmann, Isabel</creator><creator>Viplav, Abhiyan</creator><creator>Panzade, Sadhana</creator><creator>Begemann, Isabell</creator><creator>Rasch, Christiane</creator><creator>Klingauf, Jürgen</creator><creator>Matis, Maja</creator><creator>Galic, Milos</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161107</creationdate><title>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</title><author>Saha, Tanumoy ; Rathmann, Isabel ; Viplav, Abhiyan ; Panzade, Sadhana ; Begemann, Isabell ; Rasch, Christiane ; Klingauf, Jürgen ; Matis, Maja ; Galic, Milos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actins - metabolism</topic><topic>Algorithms</topic><topic>Cell Shape - physiology</topic><topic>Computer Simulation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Pseudopodia - metabolism</topic><topic>Pseudopodia - physiology</topic><topic>Software</topic><topic>Spatio-Temporal Analysis</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Tanumoy</creatorcontrib><creatorcontrib>Rathmann, Isabel</creatorcontrib><creatorcontrib>Viplav, Abhiyan</creatorcontrib><creatorcontrib>Panzade, Sadhana</creatorcontrib><creatorcontrib>Begemann, Isabell</creatorcontrib><creatorcontrib>Rasch, Christiane</creatorcontrib><creatorcontrib>Klingauf, Jürgen</creatorcontrib><creatorcontrib>Matis, Maja</creatorcontrib><creatorcontrib>Galic, Milos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Tanumoy</au><au>Rathmann, Isabel</au><au>Viplav, Abhiyan</au><au>Panzade, Sadhana</au><au>Begemann, Isabell</au><au>Rasch, Christiane</au><au>Klingauf, Jürgen</au><au>Matis, Maja</au><au>Galic, Milos</au><au>Mogilner, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2016-11-07</date><risdate>2016</risdate><volume>27</volume><issue>22</issue><spage>3616</spage><epage>3626</epage><pages>3616-3626</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>27535428</pmid><doi>10.1091/mbc.E16-06-0406</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2016-11, Vol.27 (22), p.3616-3626 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5221593 |
source | PubMed Central |
subjects | Actins - metabolism Algorithms Cell Shape - physiology Computer Simulation Image Processing, Computer-Assisted - methods Pseudopodia - metabolism Pseudopodia - physiology Software Spatio-Temporal Analysis Statistics as Topic - methods |
title | Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20analysis%20of%20filopodial%20length%20and%20spatially%20resolved%20protein%20concentration%20via%20adaptive%20shape%20tracking&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Saha,%20Tanumoy&rft.date=2016-11-07&rft.volume=27&rft.issue=22&rft.spage=3616&rft.epage=3626&rft.pages=3616-3626&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E16-06-0406&rft_dat=%3Cproquest_pubme%3E1836728309%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-ccd7113559440d0799f558b5a490b1961882f7a8115124c5127c8f2658a6fc9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836728309&rft_id=info:pmid/27535428&rfr_iscdi=true |