Loading…

TTCA: an R package for the identification of differentially expressed genes in time course microarray data

The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The exis...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2017-01, Vol.18 (1), p.33-33, Article 33
Main Authors: Albrecht, Marco, Stichel, Damian, Müller, Benedikt, Merkle, Ruth, Sticht, Carsten, Gretz, Norbert, Klingmüller, Ursula, Breuhahn, Kai, Matthäus, Franziska
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements. The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF). Here we describe a new, efficient method for the analysis of sparse and heterogeneous time course data with high detection sensitivity and transparency. It is implemented as R package TTCA (transcript time course analysis) and can be installed from the Comprehensive R Archive Network, CRAN. The source code is provided with the Additional file 1.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-016-1440-8