Loading…

Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism

Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we e...

Full description

Saved in:
Bibliographic Details
Published in:Genetics selection evolution (Paris) 2017-01, Vol.49 (1), p.9-9, Article 9
Main Authors: Wallace, Robert J, Snelling, Timothy J, McCartney, Christine A, Tapio, Ilma, Strozzi, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73
cites cdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73
container_end_page 9
container_issue 1
container_start_page 9
container_title Genetics selection evolution (Paris)
container_volume 49
creator Wallace, Robert J
Snelling, Timothy J
McCartney, Christine A
Tapio, Ilma
Strozzi, Francesco
description Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.
doi_str_mv 10.1186/s12711-017-0285-6
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477785641</galeid><sourcerecordid>A477785641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhaMK1JaWB2CDIrGhixQ7_t8gjSqglUZCgrK2HOcm4yqxBzupytvjMKWaqRDKIrbznXOdc29RvMHoEmPJPyRcC4wrhEWFaskqflSc4lqJSnHJX-ytT4pXKd0hhDjl9Lg4qSVSBAlyWoTVdjs4ayYXfBm6coTJVGF0NpUT2I13P2fIy1DOvoWYJuPbso8AfhPmBGVvUgmjSynLUxmi653PXr4vuxjGMs5j3g9_XJswuDSeFy87MyR4_fg-K358_nR7dV2tv365uVqtK8sUmqoOYQItb4lBqDPYIoEkFRIYWNnUogVFCQGrGolb1kjgpuUIW6WaTkgJgpwVH3e-27kZobXgp2gGvY1uNPGXDsbpwy_ebXQf7jWrKaoFyQYXO4PNM9n1aq2XM4SpUJiQe5zZ94_FYljymnSOxMIwGA85Jp17hRklDMmMvnuG3oU55oySrplgtaCS0_9R2YsqIVm959WbAbTzXch_YpfSekWFyBCny-Uu_0Hlp82Ns8FD5_L5geDiQJCZCR6m3swp6Zvv3w5ZvGNtDClF6J6iwkgvM6p3M5rTEnqZUc2z5u1-a54Uf4eS_AaXWOEl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864978528</pqid></control><display><type>article</type><title>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Wallace, Robert J ; Snelling, Timothy J ; McCartney, Christine A ; Tapio, Ilma ; Strozzi, Francesco</creator><creatorcontrib>Wallace, Robert J ; Snelling, Timothy J ; McCartney, Christine A ; Tapio, Ilma ; Strozzi, Francesco</creatorcontrib><description>Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.</description><identifier>ISSN: 1297-9686</identifier><identifier>ISSN: 0999-193X</identifier><identifier>EISSN: 1297-9686</identifier><identifier>DOI: 10.1186/s12711-017-0285-6</identifier><identifier>PMID: 28093073</identifier><language>eng</language><publisher>France: BioMed Central Ltd</publisher><subject>Air pollution ; Alcohols ; Amino acids ; Analysis ; Animals ; Annotations ; Bacteria ; Biological activity ; Cattle ; Climate change ; Community structure ; Efficiency ; Electrophoresis ; Emissions ; Emitters ; Environmental aspects ; Environmental impact ; Enzymes ; Fatty acids ; Feeds ; Fermentation ; Fungi ; Gel electrophoresis ; Gene expression ; Gene Expression Profiling ; Genes ; Greenhouse effect ; Greenhouse gases ; Health aspects ; Life Sciences ; Livestock ; Metabolism ; Metabolites ; Metabolome ; Metabolomics ; Metabolomics - methods ; Metagenome ; Metagenomics ; Metagenomics - methods ; Methane ; Methane - metabolism ; Methanogenesis ; Methods ; Microbial activity ; Microbiota ; Microorganisms ; Nitrogen ; Nitrogen - metabolism ; Nitrous oxide ; Nucleotide sequence ; Physiological aspects ; Polyacrylamide ; Proteins ; Proteome ; Proteomics - methods ; Review ; rRNA ; Rumen ; Rumen - microbiology ; Ruminants - microbiology ; Sequence analysis ; Sheep ; Shotguns ; Taxonomy ; Transcription ; Transcriptome</subject><ispartof>Genetics selection evolution (Paris), 2017-01, Vol.49 (1), p.9-9, Article 9</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</citedby><cites>FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240273/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1864978528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28093073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01479133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallace, Robert J</creatorcontrib><creatorcontrib>Snelling, Timothy J</creatorcontrib><creatorcontrib>McCartney, Christine A</creatorcontrib><creatorcontrib>Tapio, Ilma</creatorcontrib><creatorcontrib>Strozzi, Francesco</creatorcontrib><title>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</title><title>Genetics selection evolution (Paris)</title><addtitle>Genet Sel Evol</addtitle><description>Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.</description><subject>Air pollution</subject><subject>Alcohols</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Annotations</subject><subject>Bacteria</subject><subject>Biological activity</subject><subject>Cattle</subject><subject>Climate change</subject><subject>Community structure</subject><subject>Efficiency</subject><subject>Electrophoresis</subject><subject>Emissions</subject><subject>Emitters</subject><subject>Environmental aspects</subject><subject>Environmental impact</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Feeds</subject><subject>Fermentation</subject><subject>Fungi</subject><subject>Gel electrophoresis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Health aspects</subject><subject>Life Sciences</subject><subject>Livestock</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Metagenome</subject><subject>Metagenomics</subject><subject>Metagenomics - methods</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanogenesis</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrous oxide</subject><subject>Nucleotide sequence</subject><subject>Physiological aspects</subject><subject>Polyacrylamide</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomics - methods</subject><subject>Review</subject><subject>rRNA</subject><subject>Rumen</subject><subject>Rumen - microbiology</subject><subject>Ruminants - microbiology</subject><subject>Sequence analysis</subject><subject>Sheep</subject><subject>Shotguns</subject><subject>Taxonomy</subject><subject>Transcription</subject><subject>Transcriptome</subject><issn>1297-9686</issn><issn>0999-193X</issn><issn>1297-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9ks1u1DAUhaMK1JaWB2CDIrGhixQ7_t8gjSqglUZCgrK2HOcm4yqxBzupytvjMKWaqRDKIrbznXOdc29RvMHoEmPJPyRcC4wrhEWFaskqflSc4lqJSnHJX-ytT4pXKd0hhDjl9Lg4qSVSBAlyWoTVdjs4ayYXfBm6coTJVGF0NpUT2I13P2fIy1DOvoWYJuPbso8AfhPmBGVvUgmjSynLUxmi653PXr4vuxjGMs5j3g9_XJswuDSeFy87MyR4_fg-K358_nR7dV2tv365uVqtK8sUmqoOYQItb4lBqDPYIoEkFRIYWNnUogVFCQGrGolb1kjgpuUIW6WaTkgJgpwVH3e-27kZobXgp2gGvY1uNPGXDsbpwy_ebXQf7jWrKaoFyQYXO4PNM9n1aq2XM4SpUJiQe5zZ94_FYljymnSOxMIwGA85Jp17hRklDMmMvnuG3oU55oySrplgtaCS0_9R2YsqIVm959WbAbTzXch_YpfSekWFyBCny-Uu_0Hlp82Ns8FD5_L5geDiQJCZCR6m3swp6Zvv3w5ZvGNtDClF6J6iwkgvM6p3M5rTEnqZUc2z5u1-a54Uf4eS_AaXWOEl</recordid><startdate>20170116</startdate><enddate>20170116</enddate><creator>Wallace, Robert J</creator><creator>Snelling, Timothy J</creator><creator>McCartney, Christine A</creator><creator>Tapio, Ilma</creator><creator>Strozzi, Francesco</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20170116</creationdate><title>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</title><author>Wallace, Robert J ; Snelling, Timothy J ; McCartney, Christine A ; Tapio, Ilma ; Strozzi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air pollution</topic><topic>Alcohols</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Annotations</topic><topic>Bacteria</topic><topic>Biological activity</topic><topic>Cattle</topic><topic>Climate change</topic><topic>Community structure</topic><topic>Efficiency</topic><topic>Electrophoresis</topic><topic>Emissions</topic><topic>Emitters</topic><topic>Environmental aspects</topic><topic>Environmental impact</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Feeds</topic><topic>Fermentation</topic><topic>Fungi</topic><topic>Gel electrophoresis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Health aspects</topic><topic>Life Sciences</topic><topic>Livestock</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Metagenome</topic><topic>Metagenomics</topic><topic>Metagenomics - methods</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanogenesis</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrous oxide</topic><topic>Nucleotide sequence</topic><topic>Physiological aspects</topic><topic>Polyacrylamide</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomics - methods</topic><topic>Review</topic><topic>rRNA</topic><topic>Rumen</topic><topic>Rumen - microbiology</topic><topic>Ruminants - microbiology</topic><topic>Sequence analysis</topic><topic>Sheep</topic><topic>Shotguns</topic><topic>Taxonomy</topic><topic>Transcription</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallace, Robert J</creatorcontrib><creatorcontrib>Snelling, Timothy J</creatorcontrib><creatorcontrib>McCartney, Christine A</creatorcontrib><creatorcontrib>Tapio, Ilma</creatorcontrib><creatorcontrib>Strozzi, Francesco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics selection evolution (Paris)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallace, Robert J</au><au>Snelling, Timothy J</au><au>McCartney, Christine A</au><au>Tapio, Ilma</au><au>Strozzi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</atitle><jtitle>Genetics selection evolution (Paris)</jtitle><addtitle>Genet Sel Evol</addtitle><date>2017-01-16</date><risdate>2017</risdate><volume>49</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>1297-9686</issn><issn>0999-193X</issn><eissn>1297-9686</eissn><abstract>Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.</abstract><cop>France</cop><pub>BioMed Central Ltd</pub><pmid>28093073</pmid><doi>10.1186/s12711-017-0285-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1297-9686
ispartof Genetics selection evolution (Paris), 2017-01, Vol.49 (1), p.9-9, Article 9
issn 1297-9686
0999-193X
1297-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240273
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Air pollution
Alcohols
Amino acids
Analysis
Animals
Annotations
Bacteria
Biological activity
Cattle
Climate change
Community structure
Efficiency
Electrophoresis
Emissions
Emitters
Environmental aspects
Environmental impact
Enzymes
Fatty acids
Feeds
Fermentation
Fungi
Gel electrophoresis
Gene expression
Gene Expression Profiling
Genes
Greenhouse effect
Greenhouse gases
Health aspects
Life Sciences
Livestock
Metabolism
Metabolites
Metabolome
Metabolomics
Metabolomics - methods
Metagenome
Metagenomics
Metagenomics - methods
Methane
Methane - metabolism
Methanogenesis
Methods
Microbial activity
Microbiota
Microorganisms
Nitrogen
Nitrogen - metabolism
Nitrous oxide
Nucleotide sequence
Physiological aspects
Polyacrylamide
Proteins
Proteome
Proteomics - methods
Review
rRNA
Rumen
Rumen - microbiology
Ruminants - microbiology
Sequence analysis
Sheep
Shotguns
Taxonomy
Transcription
Transcriptome
title Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20meta-omics%20techniques%20to%20understand%20greenhouse%20gas%20emissions%20originating%20from%20ruminal%20metabolism&rft.jtitle=Genetics%20selection%20evolution%20(Paris)&rft.au=Wallace,%20Robert%20J&rft.date=2017-01-16&rft.volume=49&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=1297-9686&rft.eissn=1297-9686&rft_id=info:doi/10.1186/s12711-017-0285-6&rft_dat=%3Cgale_pubme%3EA477785641%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864978528&rft_id=info:pmid/28093073&rft_galeid=A477785641&rfr_iscdi=true