Loading…
Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism
Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we e...
Saved in:
Published in: | Genetics selection evolution (Paris) 2017-01, Vol.49 (1), p.9-9, Article 9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 9 |
container_title | Genetics selection evolution (Paris) |
container_volume | 49 |
creator | Wallace, Robert J Snelling, Timothy J McCartney, Christine A Tapio, Ilma Strozzi, Francesco |
description | Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information. |
doi_str_mv | 10.1186/s12711-017-0285-6 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477785641</galeid><sourcerecordid>A477785641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhaMK1JaWB2CDIrGhixQ7_t8gjSqglUZCgrK2HOcm4yqxBzupytvjMKWaqRDKIrbznXOdc29RvMHoEmPJPyRcC4wrhEWFaskqflSc4lqJSnHJX-ytT4pXKd0hhDjl9Lg4qSVSBAlyWoTVdjs4ayYXfBm6coTJVGF0NpUT2I13P2fIy1DOvoWYJuPbso8AfhPmBGVvUgmjSynLUxmi653PXr4vuxjGMs5j3g9_XJswuDSeFy87MyR4_fg-K358_nR7dV2tv365uVqtK8sUmqoOYQItb4lBqDPYIoEkFRIYWNnUogVFCQGrGolb1kjgpuUIW6WaTkgJgpwVH3e-27kZobXgp2gGvY1uNPGXDsbpwy_ebXQf7jWrKaoFyQYXO4PNM9n1aq2XM4SpUJiQe5zZ94_FYljymnSOxMIwGA85Jp17hRklDMmMvnuG3oU55oySrplgtaCS0_9R2YsqIVm959WbAbTzXch_YpfSekWFyBCny-Uu_0Hlp82Ns8FD5_L5geDiQJCZCR6m3swp6Zvv3w5ZvGNtDClF6J6iwkgvM6p3M5rTEnqZUc2z5u1-a54Uf4eS_AaXWOEl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864978528</pqid></control><display><type>article</type><title>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Wallace, Robert J ; Snelling, Timothy J ; McCartney, Christine A ; Tapio, Ilma ; Strozzi, Francesco</creator><creatorcontrib>Wallace, Robert J ; Snelling, Timothy J ; McCartney, Christine A ; Tapio, Ilma ; Strozzi, Francesco</creatorcontrib><description>Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.</description><identifier>ISSN: 1297-9686</identifier><identifier>ISSN: 0999-193X</identifier><identifier>EISSN: 1297-9686</identifier><identifier>DOI: 10.1186/s12711-017-0285-6</identifier><identifier>PMID: 28093073</identifier><language>eng</language><publisher>France: BioMed Central Ltd</publisher><subject>Air pollution ; Alcohols ; Amino acids ; Analysis ; Animals ; Annotations ; Bacteria ; Biological activity ; Cattle ; Climate change ; Community structure ; Efficiency ; Electrophoresis ; Emissions ; Emitters ; Environmental aspects ; Environmental impact ; Enzymes ; Fatty acids ; Feeds ; Fermentation ; Fungi ; Gel electrophoresis ; Gene expression ; Gene Expression Profiling ; Genes ; Greenhouse effect ; Greenhouse gases ; Health aspects ; Life Sciences ; Livestock ; Metabolism ; Metabolites ; Metabolome ; Metabolomics ; Metabolomics - methods ; Metagenome ; Metagenomics ; Metagenomics - methods ; Methane ; Methane - metabolism ; Methanogenesis ; Methods ; Microbial activity ; Microbiota ; Microorganisms ; Nitrogen ; Nitrogen - metabolism ; Nitrous oxide ; Nucleotide sequence ; Physiological aspects ; Polyacrylamide ; Proteins ; Proteome ; Proteomics - methods ; Review ; rRNA ; Rumen ; Rumen - microbiology ; Ruminants - microbiology ; Sequence analysis ; Sheep ; Shotguns ; Taxonomy ; Transcription ; Transcriptome</subject><ispartof>Genetics selection evolution (Paris), 2017-01, Vol.49 (1), p.9-9, Article 9</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</citedby><cites>FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240273/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1864978528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28093073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01479133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallace, Robert J</creatorcontrib><creatorcontrib>Snelling, Timothy J</creatorcontrib><creatorcontrib>McCartney, Christine A</creatorcontrib><creatorcontrib>Tapio, Ilma</creatorcontrib><creatorcontrib>Strozzi, Francesco</creatorcontrib><title>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</title><title>Genetics selection evolution (Paris)</title><addtitle>Genet Sel Evol</addtitle><description>Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.</description><subject>Air pollution</subject><subject>Alcohols</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Annotations</subject><subject>Bacteria</subject><subject>Biological activity</subject><subject>Cattle</subject><subject>Climate change</subject><subject>Community structure</subject><subject>Efficiency</subject><subject>Electrophoresis</subject><subject>Emissions</subject><subject>Emitters</subject><subject>Environmental aspects</subject><subject>Environmental impact</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Feeds</subject><subject>Fermentation</subject><subject>Fungi</subject><subject>Gel electrophoresis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Health aspects</subject><subject>Life Sciences</subject><subject>Livestock</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Metagenome</subject><subject>Metagenomics</subject><subject>Metagenomics - methods</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanogenesis</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrous oxide</subject><subject>Nucleotide sequence</subject><subject>Physiological aspects</subject><subject>Polyacrylamide</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomics - methods</subject><subject>Review</subject><subject>rRNA</subject><subject>Rumen</subject><subject>Rumen - microbiology</subject><subject>Ruminants - microbiology</subject><subject>Sequence analysis</subject><subject>Sheep</subject><subject>Shotguns</subject><subject>Taxonomy</subject><subject>Transcription</subject><subject>Transcriptome</subject><issn>1297-9686</issn><issn>0999-193X</issn><issn>1297-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9ks1u1DAUhaMK1JaWB2CDIrGhixQ7_t8gjSqglUZCgrK2HOcm4yqxBzupytvjMKWaqRDKIrbznXOdc29RvMHoEmPJPyRcC4wrhEWFaskqflSc4lqJSnHJX-ytT4pXKd0hhDjl9Lg4qSVSBAlyWoTVdjs4ayYXfBm6coTJVGF0NpUT2I13P2fIy1DOvoWYJuPbso8AfhPmBGVvUgmjSynLUxmi653PXr4vuxjGMs5j3g9_XJswuDSeFy87MyR4_fg-K358_nR7dV2tv365uVqtK8sUmqoOYQItb4lBqDPYIoEkFRIYWNnUogVFCQGrGolb1kjgpuUIW6WaTkgJgpwVH3e-27kZobXgp2gGvY1uNPGXDsbpwy_ebXQf7jWrKaoFyQYXO4PNM9n1aq2XM4SpUJiQe5zZ94_FYljymnSOxMIwGA85Jp17hRklDMmMvnuG3oU55oySrplgtaCS0_9R2YsqIVm959WbAbTzXch_YpfSekWFyBCny-Uu_0Hlp82Ns8FD5_L5geDiQJCZCR6m3swp6Zvv3w5ZvGNtDClF6J6iwkgvM6p3M5rTEnqZUc2z5u1-a54Uf4eS_AaXWOEl</recordid><startdate>20170116</startdate><enddate>20170116</enddate><creator>Wallace, Robert J</creator><creator>Snelling, Timothy J</creator><creator>McCartney, Christine A</creator><creator>Tapio, Ilma</creator><creator>Strozzi, Francesco</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20170116</creationdate><title>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</title><author>Wallace, Robert J ; Snelling, Timothy J ; McCartney, Christine A ; Tapio, Ilma ; Strozzi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air pollution</topic><topic>Alcohols</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Annotations</topic><topic>Bacteria</topic><topic>Biological activity</topic><topic>Cattle</topic><topic>Climate change</topic><topic>Community structure</topic><topic>Efficiency</topic><topic>Electrophoresis</topic><topic>Emissions</topic><topic>Emitters</topic><topic>Environmental aspects</topic><topic>Environmental impact</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Feeds</topic><topic>Fermentation</topic><topic>Fungi</topic><topic>Gel electrophoresis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Health aspects</topic><topic>Life Sciences</topic><topic>Livestock</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Metagenome</topic><topic>Metagenomics</topic><topic>Metagenomics - methods</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanogenesis</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrous oxide</topic><topic>Nucleotide sequence</topic><topic>Physiological aspects</topic><topic>Polyacrylamide</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomics - methods</topic><topic>Review</topic><topic>rRNA</topic><topic>Rumen</topic><topic>Rumen - microbiology</topic><topic>Ruminants - microbiology</topic><topic>Sequence analysis</topic><topic>Sheep</topic><topic>Shotguns</topic><topic>Taxonomy</topic><topic>Transcription</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallace, Robert J</creatorcontrib><creatorcontrib>Snelling, Timothy J</creatorcontrib><creatorcontrib>McCartney, Christine A</creatorcontrib><creatorcontrib>Tapio, Ilma</creatorcontrib><creatorcontrib>Strozzi, Francesco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics selection evolution (Paris)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallace, Robert J</au><au>Snelling, Timothy J</au><au>McCartney, Christine A</au><au>Tapio, Ilma</au><au>Strozzi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism</atitle><jtitle>Genetics selection evolution (Paris)</jtitle><addtitle>Genet Sel Evol</addtitle><date>2017-01-16</date><risdate>2017</risdate><volume>49</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>1297-9686</issn><issn>0999-193X</issn><eissn>1297-9686</eissn><abstract>Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.</abstract><cop>France</cop><pub>BioMed Central Ltd</pub><pmid>28093073</pmid><doi>10.1186/s12711-017-0285-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1297-9686 |
ispartof | Genetics selection evolution (Paris), 2017-01, Vol.49 (1), p.9-9, Article 9 |
issn | 1297-9686 0999-193X 1297-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240273 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Air pollution Alcohols Amino acids Analysis Animals Annotations Bacteria Biological activity Cattle Climate change Community structure Efficiency Electrophoresis Emissions Emitters Environmental aspects Environmental impact Enzymes Fatty acids Feeds Fermentation Fungi Gel electrophoresis Gene expression Gene Expression Profiling Genes Greenhouse effect Greenhouse gases Health aspects Life Sciences Livestock Metabolism Metabolites Metabolome Metabolomics Metabolomics - methods Metagenome Metagenomics Metagenomics - methods Methane Methane - metabolism Methanogenesis Methods Microbial activity Microbiota Microorganisms Nitrogen Nitrogen - metabolism Nitrous oxide Nucleotide sequence Physiological aspects Polyacrylamide Proteins Proteome Proteomics - methods Review rRNA Rumen Rumen - microbiology Ruminants - microbiology Sequence analysis Sheep Shotguns Taxonomy Transcription Transcriptome |
title | Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20meta-omics%20techniques%20to%20understand%20greenhouse%20gas%20emissions%20originating%20from%20ruminal%20metabolism&rft.jtitle=Genetics%20selection%20evolution%20(Paris)&rft.au=Wallace,%20Robert%20J&rft.date=2017-01-16&rft.volume=49&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=1297-9686&rft.eissn=1297-9686&rft_id=info:doi/10.1186/s12711-017-0285-6&rft_dat=%3Cgale_pubme%3EA477785641%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-f013ed6d3a00fa1c0708478e5ec8b27de9433ec9b81d5b8e6ad601c99bf788e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864978528&rft_id=info:pmid/28093073&rft_galeid=A477785641&rfr_iscdi=true |