Loading…
Arginine substitution of a cysteine in transmembrane helix M8 converts Na⁺,K⁺-ATPase to an electroneutral pump similar to H⁺,K⁺-ATPase
Na⁺,K⁺-ATPase and H⁺,K⁺-ATPase are electrogenic and nonelectrogenic ion pumps, respectively. The underlying structural basis for this difference has not been established, and it has not been revealed how the H⁺,K⁺-ATPase avoids binding of Na⁺ at the site corresponding to the Na⁺-specific site of the...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-01, Vol.114 (2), p.316-321 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-1ed2518aadf66e4cd6c5849abef4031c9132a7476c213667d03e9b746a4971a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-1ed2518aadf66e4cd6c5849abef4031c9132a7476c213667d03e9b746a4971a23 |
container_end_page | 321 |
container_issue | 2 |
container_start_page | 316 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Holm, Rikke Khandelwal, Jaanki Einholm, Anja P. Andersen, Jens P. Artigas, Pablo Vilsen, Bente |
description | Na⁺,K⁺-ATPase and H⁺,K⁺-ATPase are electrogenic and nonelectrogenic ion pumps, respectively. The underlying structural basis for this difference has not been established, and it has not been revealed how the H⁺,K⁺-ATPase avoids binding of Na⁺ at the site corresponding to the Na⁺-specific site of the Na⁺,K⁺-ATPase (site III). In this study, we addressed these questions by using site-directed mutagenesis in combination with enzymatic, transport, and electrophysiological functional measurements. Replacement of the cysteine C932 in transmembrane helix M8 of Na⁺,K⁺-ATPase with arginine, present in the H⁺,K⁺-ATPase at the corresponding position, converted the normal 3Na⁺:2K⁺:1ATP stoichiometry of the Na⁺,K⁺-ATPase to electroneutral 2Na⁺:2K⁺:1ATP stoichiometry similar to the electroneutral transport mode of the H⁺,K⁺-ATPase. The electroneutral C932R mutant of the Na⁺,K⁺-ATPase retained a wild-type–like enzyme turnover rate for ATP hydrolysis and rate of cellular K⁺ uptake. Only a relatively minor reduction of apparent Na⁺ affinity for activation of phosphorylation from ATP was observed for C932R, whereas replacement of C932 with leucine or phenylalanine, the latter of a size comparable to arginine, led to spectacular reductions of apparent Na⁺ affinity without changing the electrogenicity. From these results, in combination with structural considerations, it appears that the guanidine⁺ group of the M8 arginine replaces Na⁺ at the third site, thus preventing Na⁺ binding there, although allowing Na⁺ to bind at the two other sites and become transported. Hence, in the H⁺,K⁺-ATPase, the ability of the M8 arginine to donate an internal cation binding at the third site is decisive for the electroneutral transport mode of this pump. |
doi_str_mv | 10.1073/pnas.1617951114 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26478711</jstor_id><sourcerecordid>26478711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-1ed2518aadf66e4cd6c5849abef4031c9132a7476c213667d03e9b746a4971a23</originalsourceid><addsrcrecordid>eNpdkcFu1DAQhiMEokvhzAlkiQsH0nocx3YuSKsKKGoLHMrZcpxJ61ViL7ZT0SMvwAPxODwJiba00MvM4f_m18z8RfEc6AFQWR1uvUkHIEA2NQDwB8UKaAOl4A19WKwoZbJUnPG94klKG0ppUyv6uNhjijLFgK-Kn-t44bzzSNLUpuzylF3wJPTEEHudMi6S8yRH49OIYzt3JJc4uO_kTBEb_BXGnMgn8_vHrzcncynX519MQpIDMZ7ggDbH4HGaHQayncYtSW50g4kLcXxv6mnxqDdDwmc3fb_4-v7d-dFxefr5w8ej9Wlpa9rkErBjNShjul4I5LYTtla8MS32nFZgG6iYkVwKy6ASQna0wqaVXBjeSDCs2i_e7ny3UztiZ9Ev6-ltdKOJ1zoYp_9XvLvUF-FK14xTCXQ2eH1jEMO3CVPWo0sWh2F-T5iSBlVXkteq5jP66h66CVP083kLpQSlnC_U4Y6yMaQUsb9dBqhestZL1vou63ni5b833PJ_w52BFztgk3KId7rgUkmA6g-017Rg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858600444</pqid></control><display><type>article</type><title>Arginine substitution of a cysteine in transmembrane helix M8 converts Na⁺,K⁺-ATPase to an electroneutral pump similar to H⁺,K⁺-ATPase</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Holm, Rikke ; Khandelwal, Jaanki ; Einholm, Anja P. ; Andersen, Jens P. ; Artigas, Pablo ; Vilsen, Bente</creator><creatorcontrib>Holm, Rikke ; Khandelwal, Jaanki ; Einholm, Anja P. ; Andersen, Jens P. ; Artigas, Pablo ; Vilsen, Bente</creatorcontrib><description>Na⁺,K⁺-ATPase and H⁺,K⁺-ATPase are electrogenic and nonelectrogenic ion pumps, respectively. The underlying structural basis for this difference has not been established, and it has not been revealed how the H⁺,K⁺-ATPase avoids binding of Na⁺ at the site corresponding to the Na⁺-specific site of the Na⁺,K⁺-ATPase (site III). In this study, we addressed these questions by using site-directed mutagenesis in combination with enzymatic, transport, and electrophysiological functional measurements. Replacement of the cysteine C932 in transmembrane helix M8 of Na⁺,K⁺-ATPase with arginine, present in the H⁺,K⁺-ATPase at the corresponding position, converted the normal 3Na⁺:2K⁺:1ATP stoichiometry of the Na⁺,K⁺-ATPase to electroneutral 2Na⁺:2K⁺:1ATP stoichiometry similar to the electroneutral transport mode of the H⁺,K⁺-ATPase. The electroneutral C932R mutant of the Na⁺,K⁺-ATPase retained a wild-type–like enzyme turnover rate for ATP hydrolysis and rate of cellular K⁺ uptake. Only a relatively minor reduction of apparent Na⁺ affinity for activation of phosphorylation from ATP was observed for C932R, whereas replacement of C932 with leucine or phenylalanine, the latter of a size comparable to arginine, led to spectacular reductions of apparent Na⁺ affinity without changing the electrogenicity. From these results, in combination with structural considerations, it appears that the guanidine⁺ group of the M8 arginine replaces Na⁺ at the third site, thus preventing Na⁺ binding there, although allowing Na⁺ to bind at the two other sites and become transported. Hence, in the H⁺,K⁺-ATPase, the ability of the M8 arginine to donate an internal cation binding at the third site is decisive for the electroneutral transport mode of this pump.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1617951114</identifier><identifier>PMID: 28028214</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatase ; Amino Acid Substitution ; Arginine ; Binding Sites ; Binding, Competitive ; Biological Sciences ; Cations ; Cell Membrane - enzymology ; Cysteine ; H(+)-K(+)-Exchanging ATPase - chemistry ; H(+)-K(+)-Exchanging ATPase - genetics ; Hemiplegia ; Humans ; Ion Channels ; Ion Transport ; Models, Molecular ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; Phenylalanine ; Phosphorylation ; Potassium - metabolism ; Protein Conformation ; Protein Subunits - chemistry ; Proton Pumps ; Sequence Alignment ; Sodium - metabolism ; Sodium-Potassium-Exchanging ATPase - chemistry ; Sodium-Potassium-Exchanging ATPase - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-01, Vol.114 (2), p.316-321</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-1ed2518aadf66e4cd6c5849abef4031c9132a7476c213667d03e9b746a4971a23</citedby><cites>FETCH-LOGICAL-c509t-1ed2518aadf66e4cd6c5849abef4031c9132a7476c213667d03e9b746a4971a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26478711$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26478711$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28028214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holm, Rikke</creatorcontrib><creatorcontrib>Khandelwal, Jaanki</creatorcontrib><creatorcontrib>Einholm, Anja P.</creatorcontrib><creatorcontrib>Andersen, Jens P.</creatorcontrib><creatorcontrib>Artigas, Pablo</creatorcontrib><creatorcontrib>Vilsen, Bente</creatorcontrib><title>Arginine substitution of a cysteine in transmembrane helix M8 converts Na⁺,K⁺-ATPase to an electroneutral pump similar to H⁺,K⁺-ATPase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Na⁺,K⁺-ATPase and H⁺,K⁺-ATPase are electrogenic and nonelectrogenic ion pumps, respectively. The underlying structural basis for this difference has not been established, and it has not been revealed how the H⁺,K⁺-ATPase avoids binding of Na⁺ at the site corresponding to the Na⁺-specific site of the Na⁺,K⁺-ATPase (site III). In this study, we addressed these questions by using site-directed mutagenesis in combination with enzymatic, transport, and electrophysiological functional measurements. Replacement of the cysteine C932 in transmembrane helix M8 of Na⁺,K⁺-ATPase with arginine, present in the H⁺,K⁺-ATPase at the corresponding position, converted the normal 3Na⁺:2K⁺:1ATP stoichiometry of the Na⁺,K⁺-ATPase to electroneutral 2Na⁺:2K⁺:1ATP stoichiometry similar to the electroneutral transport mode of the H⁺,K⁺-ATPase. The electroneutral C932R mutant of the Na⁺,K⁺-ATPase retained a wild-type–like enzyme turnover rate for ATP hydrolysis and rate of cellular K⁺ uptake. Only a relatively minor reduction of apparent Na⁺ affinity for activation of phosphorylation from ATP was observed for C932R, whereas replacement of C932 with leucine or phenylalanine, the latter of a size comparable to arginine, led to spectacular reductions of apparent Na⁺ affinity without changing the electrogenicity. From these results, in combination with structural considerations, it appears that the guanidine⁺ group of the M8 arginine replaces Na⁺ at the third site, thus preventing Na⁺ binding there, although allowing Na⁺ to bind at the two other sites and become transported. Hence, in the H⁺,K⁺-ATPase, the ability of the M8 arginine to donate an internal cation binding at the third site is decisive for the electroneutral transport mode of this pump.</description><subject>Adenosine triphosphatase</subject><subject>Amino Acid Substitution</subject><subject>Arginine</subject><subject>Binding Sites</subject><subject>Binding, Competitive</subject><subject>Biological Sciences</subject><subject>Cations</subject><subject>Cell Membrane - enzymology</subject><subject>Cysteine</subject><subject>H(+)-K(+)-Exchanging ATPase - chemistry</subject><subject>H(+)-K(+)-Exchanging ATPase - genetics</subject><subject>Hemiplegia</subject><subject>Humans</subject><subject>Ion Channels</subject><subject>Ion Transport</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Phenylalanine</subject><subject>Phosphorylation</subject><subject>Potassium - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Subunits - chemistry</subject><subject>Proton Pumps</subject><subject>Sequence Alignment</subject><subject>Sodium - metabolism</subject><subject>Sodium-Potassium-Exchanging ATPase - chemistry</subject><subject>Sodium-Potassium-Exchanging ATPase - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkcFu1DAQhiMEokvhzAlkiQsH0nocx3YuSKsKKGoLHMrZcpxJ61ViL7ZT0SMvwAPxODwJiba00MvM4f_m18z8RfEc6AFQWR1uvUkHIEA2NQDwB8UKaAOl4A19WKwoZbJUnPG94klKG0ppUyv6uNhjijLFgK-Kn-t44bzzSNLUpuzylF3wJPTEEHudMi6S8yRH49OIYzt3JJc4uO_kTBEb_BXGnMgn8_vHrzcncynX519MQpIDMZ7ggDbH4HGaHQayncYtSW50g4kLcXxv6mnxqDdDwmc3fb_4-v7d-dFxefr5w8ej9Wlpa9rkErBjNShjul4I5LYTtla8MS32nFZgG6iYkVwKy6ASQna0wqaVXBjeSDCs2i_e7ny3UztiZ9Ev6-ltdKOJ1zoYp_9XvLvUF-FK14xTCXQ2eH1jEMO3CVPWo0sWh2F-T5iSBlVXkteq5jP66h66CVP083kLpQSlnC_U4Y6yMaQUsb9dBqhestZL1vou63ni5b833PJ_w52BFztgk3KId7rgUkmA6g-017Rg</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Holm, Rikke</creator><creator>Khandelwal, Jaanki</creator><creator>Einholm, Anja P.</creator><creator>Andersen, Jens P.</creator><creator>Artigas, Pablo</creator><creator>Vilsen, Bente</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170110</creationdate><title>Arginine substitution of a cysteine in transmembrane helix M8 converts Na⁺,K⁺-ATPase to an electroneutral pump similar to H⁺,K⁺-ATPase</title><author>Holm, Rikke ; Khandelwal, Jaanki ; Einholm, Anja P. ; Andersen, Jens P. ; Artigas, Pablo ; Vilsen, Bente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-1ed2518aadf66e4cd6c5849abef4031c9132a7476c213667d03e9b746a4971a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine triphosphatase</topic><topic>Amino Acid Substitution</topic><topic>Arginine</topic><topic>Binding Sites</topic><topic>Binding, Competitive</topic><topic>Biological Sciences</topic><topic>Cations</topic><topic>Cell Membrane - enzymology</topic><topic>Cysteine</topic><topic>H(+)-K(+)-Exchanging ATPase - chemistry</topic><topic>H(+)-K(+)-Exchanging ATPase - genetics</topic><topic>Hemiplegia</topic><topic>Humans</topic><topic>Ion Channels</topic><topic>Ion Transport</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Phenylalanine</topic><topic>Phosphorylation</topic><topic>Potassium - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Subunits - chemistry</topic><topic>Proton Pumps</topic><topic>Sequence Alignment</topic><topic>Sodium - metabolism</topic><topic>Sodium-Potassium-Exchanging ATPase - chemistry</topic><topic>Sodium-Potassium-Exchanging ATPase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holm, Rikke</creatorcontrib><creatorcontrib>Khandelwal, Jaanki</creatorcontrib><creatorcontrib>Einholm, Anja P.</creatorcontrib><creatorcontrib>Andersen, Jens P.</creatorcontrib><creatorcontrib>Artigas, Pablo</creatorcontrib><creatorcontrib>Vilsen, Bente</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holm, Rikke</au><au>Khandelwal, Jaanki</au><au>Einholm, Anja P.</au><au>Andersen, Jens P.</au><au>Artigas, Pablo</au><au>Vilsen, Bente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arginine substitution of a cysteine in transmembrane helix M8 converts Na⁺,K⁺-ATPase to an electroneutral pump similar to H⁺,K⁺-ATPase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>114</volume><issue>2</issue><spage>316</spage><epage>321</epage><pages>316-321</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Na⁺,K⁺-ATPase and H⁺,K⁺-ATPase are electrogenic and nonelectrogenic ion pumps, respectively. The underlying structural basis for this difference has not been established, and it has not been revealed how the H⁺,K⁺-ATPase avoids binding of Na⁺ at the site corresponding to the Na⁺-specific site of the Na⁺,K⁺-ATPase (site III). In this study, we addressed these questions by using site-directed mutagenesis in combination with enzymatic, transport, and electrophysiological functional measurements. Replacement of the cysteine C932 in transmembrane helix M8 of Na⁺,K⁺-ATPase with arginine, present in the H⁺,K⁺-ATPase at the corresponding position, converted the normal 3Na⁺:2K⁺:1ATP stoichiometry of the Na⁺,K⁺-ATPase to electroneutral 2Na⁺:2K⁺:1ATP stoichiometry similar to the electroneutral transport mode of the H⁺,K⁺-ATPase. The electroneutral C932R mutant of the Na⁺,K⁺-ATPase retained a wild-type–like enzyme turnover rate for ATP hydrolysis and rate of cellular K⁺ uptake. Only a relatively minor reduction of apparent Na⁺ affinity for activation of phosphorylation from ATP was observed for C932R, whereas replacement of C932 with leucine or phenylalanine, the latter of a size comparable to arginine, led to spectacular reductions of apparent Na⁺ affinity without changing the electrogenicity. From these results, in combination with structural considerations, it appears that the guanidine⁺ group of the M8 arginine replaces Na⁺ at the third site, thus preventing Na⁺ binding there, although allowing Na⁺ to bind at the two other sites and become transported. Hence, in the H⁺,K⁺-ATPase, the ability of the M8 arginine to donate an internal cation binding at the third site is decisive for the electroneutral transport mode of this pump.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28028214</pmid><doi>10.1073/pnas.1617951114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-01, Vol.114 (2), p.316-321 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240710 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Adenosine triphosphatase Amino Acid Substitution Arginine Binding Sites Binding, Competitive Biological Sciences Cations Cell Membrane - enzymology Cysteine H(+)-K(+)-Exchanging ATPase - chemistry H(+)-K(+)-Exchanging ATPase - genetics Hemiplegia Humans Ion Channels Ion Transport Models, Molecular Mutagenesis Mutagenesis, Site-Directed Mutation Phenylalanine Phosphorylation Potassium - metabolism Protein Conformation Protein Subunits - chemistry Proton Pumps Sequence Alignment Sodium - metabolism Sodium-Potassium-Exchanging ATPase - chemistry Sodium-Potassium-Exchanging ATPase - genetics |
title | Arginine substitution of a cysteine in transmembrane helix M8 converts Na⁺,K⁺-ATPase to an electroneutral pump similar to H⁺,K⁺-ATPase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arginine%20substitution%20of%20a%20cysteine%20in%20transmembrane%20helix%20M8%20converts%20Na%E2%81%BA,K%E2%81%BA-ATPase%20to%20an%20electroneutral%20pump%20similar%20to%20H%E2%81%BA,K%E2%81%BA-ATPase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Holm,%20Rikke&rft.date=2017-01-10&rft.volume=114&rft.issue=2&rft.spage=316&rft.epage=321&rft.pages=316-321&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1617951114&rft_dat=%3Cjstor_pubme%3E26478711%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-1ed2518aadf66e4cd6c5849abef4031c9132a7476c213667d03e9b746a4971a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1858600444&rft_id=info:pmid/28028214&rft_jstor_id=26478711&rfr_iscdi=true |