Loading…
Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain
Summary The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide eviden...
Saved in:
Published in: | Aging cell 2017-02, Vol.16 (1), p.39-51 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143 |
---|---|
cites | cdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143 |
container_end_page | 51 |
container_issue | 1 |
container_start_page | 39 |
container_title | Aging cell |
container_volume | 16 |
creator | Ishii, Takamasa Takanashi, Yumi Sugita, Koichi Miyazawa, Masaki Yanagihara, Rintaro Yasuda, Kayo Onouchi, Hiromi Kawabe, Noboru Nakata, Munehiro Yamamoto, Yorihiro Hartman, Phil S. Ishii, Naoaki |
description | Summary
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality. |
doi_str_mv | 10.1111/acel.12523 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707845778</galeid><sourcerecordid>A707845778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</originalsourceid><addsrcrecordid>eNqNks2L1DAYxoso7rp68Q-QgBcRZsxH03Q8LAzD-AEDXvQc0uRNJ0ub1KTdtXf_cDM76-iKiMkh4c3vfRKePEXxnOAlyeON0tAtCeWUPSjOSSnKxUrQ6uFpT-qz4klKVxgTscLscXFGRUWZIPy8-L71JrTgw5RQBKVHdw0ofJtzCaUBtIOEtJoSIJXGGPQ8AjJgQY8JKW-QhykGrzpk5mQnn_uDT8h5NO4B7d0wBK36YUpvkcrsDeqDgQ7ZEJFqnW9RE5XzT4tHVnUJnt2tF8WXd9vPmw-L3af3Hzfr3UJXpGQLzRu8YoxgpqDi1GBmCdWUgyYVbkq-IiXHSltlmlJTQ4itTVmDLVVjscgKF8XlUXeYmh6MBj9G1ckhul7FWQbl5P0T7_ayDdeS05IyTLLAqzuBGL5OkEbZu5Td75SH7KAkdVUzSjH7H5Tnn6l4xTP68g_0Kkwxm3pL1bzKP0h-Ua3qQDpvQ36iPojKtcCiLrkQdaaWf6HyNNA7HTxYl-v3Gl4fG3QMKUWwJzsIlod4yUO85G28MvzidwNP6M88ZYAcgZt8zfwPKbnebHdH0R-nONss</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858567181</pqid></control><display><type>article</type><title>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</title><source>PubMed Central (Open access)</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Ishii, Takamasa ; Takanashi, Yumi ; Sugita, Koichi ; Miyazawa, Masaki ; Yanagihara, Rintaro ; Yasuda, Kayo ; Onouchi, Hiromi ; Kawabe, Noboru ; Nakata, Munehiro ; Yamamoto, Yorihiro ; Hartman, Phil S. ; Ishii, Naoaki</creator><creatorcontrib>Ishii, Takamasa ; Takanashi, Yumi ; Sugita, Koichi ; Miyazawa, Masaki ; Yanagihara, Rintaro ; Yasuda, Kayo ; Onouchi, Hiromi ; Kawabe, Noboru ; Nakata, Munehiro ; Yamamoto, Yorihiro ; Hartman, Phil S. ; Ishii, Naoaki</creatorcontrib><description>Summary
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12523</identifier><identifier>PMID: 27623715</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>aging ; Aging - pathology ; Amyloidosis ; Animals ; astrocyte ; Astrocytes - metabolism ; Astrocytes - pathology ; Biomarkers - metabolism ; Brain ; Ca2 ; Calcium - metabolism ; Cyclic AMP Response Element-Binding Protein - metabolism ; Disease Models, Animal ; Glial Fibrillary Acidic Protein - metabolism ; Hippocampus - pathology ; Injuries ; JNK Mitogen-Activated Protein Kinases - metabolism ; JNK/SAPK ; Membrane Proteins - genetics ; Memory ; Mice, Inbred C57BL ; mitochondria ; Mitochondria - metabolism ; Models, Biological ; Mutation - genetics ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Original ; Oxidation-Reduction ; oxidative stress ; Phosphorylation ; Reactive Oxygen Species - metabolism ; S100 Proteins - metabolism ; Signal Transduction ; Superoxide Dismutase - metabolism ; Tetracycline ; Tetracyclines</subject><ispartof>Aging cell, 2017-02, Vol.16 (1), p.39-51</ispartof><rights>2016 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.</rights><rights>2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 The Anatomical Society and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</citedby><cites>FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242301/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1858567181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11560,25751,27922,27923,37010,37011,44588,46050,46474,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27623715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Takamasa</creatorcontrib><creatorcontrib>Takanashi, Yumi</creatorcontrib><creatorcontrib>Sugita, Koichi</creatorcontrib><creatorcontrib>Miyazawa, Masaki</creatorcontrib><creatorcontrib>Yanagihara, Rintaro</creatorcontrib><creatorcontrib>Yasuda, Kayo</creatorcontrib><creatorcontrib>Onouchi, Hiromi</creatorcontrib><creatorcontrib>Kawabe, Noboru</creatorcontrib><creatorcontrib>Nakata, Munehiro</creatorcontrib><creatorcontrib>Yamamoto, Yorihiro</creatorcontrib><creatorcontrib>Hartman, Phil S.</creatorcontrib><creatorcontrib>Ishii, Naoaki</creatorcontrib><title>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.</description><subject>aging</subject><subject>Aging - pathology</subject><subject>Amyloidosis</subject><subject>Animals</subject><subject>astrocyte</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Biomarkers - metabolism</subject><subject>Brain</subject><subject>Ca2</subject><subject>Calcium - metabolism</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Disease Models, Animal</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Injuries</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>JNK/SAPK</subject><subject>Membrane Proteins - genetics</subject><subject>Memory</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Original</subject><subject>Oxidation-Reduction</subject><subject>oxidative stress</subject><subject>Phosphorylation</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>S100 Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Tetracycline</subject><subject>Tetracyclines</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNqNks2L1DAYxoso7rp68Q-QgBcRZsxH03Q8LAzD-AEDXvQc0uRNJ0ub1KTdtXf_cDM76-iKiMkh4c3vfRKePEXxnOAlyeON0tAtCeWUPSjOSSnKxUrQ6uFpT-qz4klKVxgTscLscXFGRUWZIPy8-L71JrTgw5RQBKVHdw0ofJtzCaUBtIOEtJoSIJXGGPQ8AjJgQY8JKW-QhykGrzpk5mQnn_uDT8h5NO4B7d0wBK36YUpvkcrsDeqDgQ7ZEJFqnW9RE5XzT4tHVnUJnt2tF8WXd9vPmw-L3af3Hzfr3UJXpGQLzRu8YoxgpqDi1GBmCdWUgyYVbkq-IiXHSltlmlJTQ4itTVmDLVVjscgKF8XlUXeYmh6MBj9G1ckhul7FWQbl5P0T7_ayDdeS05IyTLLAqzuBGL5OkEbZu5Td75SH7KAkdVUzSjH7H5Tnn6l4xTP68g_0Kkwxm3pL1bzKP0h-Ua3qQDpvQ36iPojKtcCiLrkQdaaWf6HyNNA7HTxYl-v3Gl4fG3QMKUWwJzsIlod4yUO85G28MvzidwNP6M88ZYAcgZt8zfwPKbnebHdH0R-nONss</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Ishii, Takamasa</creator><creator>Takanashi, Yumi</creator><creator>Sugita, Koichi</creator><creator>Miyazawa, Masaki</creator><creator>Yanagihara, Rintaro</creator><creator>Yasuda, Kayo</creator><creator>Onouchi, Hiromi</creator><creator>Kawabe, Noboru</creator><creator>Nakata, Munehiro</creator><creator>Yamamoto, Yorihiro</creator><creator>Hartman, Phil S.</creator><creator>Ishii, Naoaki</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</title><author>Ishii, Takamasa ; Takanashi, Yumi ; Sugita, Koichi ; Miyazawa, Masaki ; Yanagihara, Rintaro ; Yasuda, Kayo ; Onouchi, Hiromi ; Kawabe, Noboru ; Nakata, Munehiro ; Yamamoto, Yorihiro ; Hartman, Phil S. ; Ishii, Naoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aging</topic><topic>Aging - pathology</topic><topic>Amyloidosis</topic><topic>Animals</topic><topic>astrocyte</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Biomarkers - metabolism</topic><topic>Brain</topic><topic>Ca2</topic><topic>Calcium - metabolism</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Disease Models, Animal</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Injuries</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>JNK/SAPK</topic><topic>Membrane Proteins - genetics</topic><topic>Memory</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Original</topic><topic>Oxidation-Reduction</topic><topic>oxidative stress</topic><topic>Phosphorylation</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>S100 Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Tetracycline</topic><topic>Tetracyclines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Takamasa</creatorcontrib><creatorcontrib>Takanashi, Yumi</creatorcontrib><creatorcontrib>Sugita, Koichi</creatorcontrib><creatorcontrib>Miyazawa, Masaki</creatorcontrib><creatorcontrib>Yanagihara, Rintaro</creatorcontrib><creatorcontrib>Yasuda, Kayo</creatorcontrib><creatorcontrib>Onouchi, Hiromi</creatorcontrib><creatorcontrib>Kawabe, Noboru</creatorcontrib><creatorcontrib>Nakata, Munehiro</creatorcontrib><creatorcontrib>Yamamoto, Yorihiro</creatorcontrib><creatorcontrib>Hartman, Phil S.</creatorcontrib><creatorcontrib>Ishii, Naoaki</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Takamasa</au><au>Takanashi, Yumi</au><au>Sugita, Koichi</au><au>Miyazawa, Masaki</au><au>Yanagihara, Rintaro</au><au>Yasuda, Kayo</au><au>Onouchi, Hiromi</au><au>Kawabe, Noboru</au><au>Nakata, Munehiro</au><au>Yamamoto, Yorihiro</au><au>Hartman, Phil S.</au><au>Ishii, Naoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2017-02</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>39</spage><epage>51</epage><pages>39-51</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>27623715</pmid><doi>10.1111/acel.12523</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-9718 |
ispartof | Aging cell, 2017-02, Vol.16 (1), p.39-51 |
issn | 1474-9718 1474-9726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242301 |
source | PubMed Central (Open access); Wiley Online Library Open Access; Publicly Available Content Database |
subjects | aging Aging - pathology Amyloidosis Animals astrocyte Astrocytes - metabolism Astrocytes - pathology Biomarkers - metabolism Brain Ca2 Calcium - metabolism Cyclic AMP Response Element-Binding Protein - metabolism Disease Models, Animal Glial Fibrillary Acidic Protein - metabolism Hippocampus - pathology Injuries JNK Mitogen-Activated Protein Kinases - metabolism JNK/SAPK Membrane Proteins - genetics Memory Mice, Inbred C57BL mitochondria Mitochondria - metabolism Models, Biological Mutation - genetics Neurons Neurons - metabolism Neurons - pathology Original Oxidation-Reduction oxidative stress Phosphorylation Reactive Oxygen Species - metabolism S100 Proteins - metabolism Signal Transduction Superoxide Dismutase - metabolism Tetracycline Tetracyclines |
title | Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20reactive%20oxygen%20species%20cause%20astrocyte%20defects%20and%20neuronal%20dysfunctions%20in%20the%20hippocampus:%20a%20new%20model%20for%20aging%20brain&rft.jtitle=Aging%20cell&rft.au=Ishii,%20Takamasa&rft.date=2017-02&rft.volume=16&rft.issue=1&rft.spage=39&rft.epage=51&rft.pages=39-51&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12523&rft_dat=%3Cgale_pubme%3EA707845778%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1858567181&rft_id=info:pmid/27623715&rft_galeid=A707845778&rfr_iscdi=true |