Loading…

Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain

Summary The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide eviden...

Full description

Saved in:
Bibliographic Details
Published in:Aging cell 2017-02, Vol.16 (1), p.39-51
Main Authors: Ishii, Takamasa, Takanashi, Yumi, Sugita, Koichi, Miyazawa, Masaki, Yanagihara, Rintaro, Yasuda, Kayo, Onouchi, Hiromi, Kawabe, Noboru, Nakata, Munehiro, Yamamoto, Yorihiro, Hartman, Phil S., Ishii, Naoaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143
cites cdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143
container_end_page 51
container_issue 1
container_start_page 39
container_title Aging cell
container_volume 16
creator Ishii, Takamasa
Takanashi, Yumi
Sugita, Koichi
Miyazawa, Masaki
Yanagihara, Rintaro
Yasuda, Kayo
Onouchi, Hiromi
Kawabe, Noboru
Nakata, Munehiro
Yamamoto, Yorihiro
Hartman, Phil S.
Ishii, Naoaki
description Summary The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.
doi_str_mv 10.1111/acel.12523
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707845778</galeid><sourcerecordid>A707845778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</originalsourceid><addsrcrecordid>eNqNks2L1DAYxoso7rp68Q-QgBcRZsxH03Q8LAzD-AEDXvQc0uRNJ0ub1KTdtXf_cDM76-iKiMkh4c3vfRKePEXxnOAlyeON0tAtCeWUPSjOSSnKxUrQ6uFpT-qz4klKVxgTscLscXFGRUWZIPy8-L71JrTgw5RQBKVHdw0ofJtzCaUBtIOEtJoSIJXGGPQ8AjJgQY8JKW-QhykGrzpk5mQnn_uDT8h5NO4B7d0wBK36YUpvkcrsDeqDgQ7ZEJFqnW9RE5XzT4tHVnUJnt2tF8WXd9vPmw-L3af3Hzfr3UJXpGQLzRu8YoxgpqDi1GBmCdWUgyYVbkq-IiXHSltlmlJTQ4itTVmDLVVjscgKF8XlUXeYmh6MBj9G1ckhul7FWQbl5P0T7_ayDdeS05IyTLLAqzuBGL5OkEbZu5Td75SH7KAkdVUzSjH7H5Tnn6l4xTP68g_0Kkwxm3pL1bzKP0h-Ua3qQDpvQ36iPojKtcCiLrkQdaaWf6HyNNA7HTxYl-v3Gl4fG3QMKUWwJzsIlod4yUO85G28MvzidwNP6M88ZYAcgZt8zfwPKbnebHdH0R-nONss</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858567181</pqid></control><display><type>article</type><title>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</title><source>PubMed Central (Open access)</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Ishii, Takamasa ; Takanashi, Yumi ; Sugita, Koichi ; Miyazawa, Masaki ; Yanagihara, Rintaro ; Yasuda, Kayo ; Onouchi, Hiromi ; Kawabe, Noboru ; Nakata, Munehiro ; Yamamoto, Yorihiro ; Hartman, Phil S. ; Ishii, Naoaki</creator><creatorcontrib>Ishii, Takamasa ; Takanashi, Yumi ; Sugita, Koichi ; Miyazawa, Masaki ; Yanagihara, Rintaro ; Yasuda, Kayo ; Onouchi, Hiromi ; Kawabe, Noboru ; Nakata, Munehiro ; Yamamoto, Yorihiro ; Hartman, Phil S. ; Ishii, Naoaki</creatorcontrib><description>Summary The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12523</identifier><identifier>PMID: 27623715</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>aging ; Aging - pathology ; Amyloidosis ; Animals ; astrocyte ; Astrocytes - metabolism ; Astrocytes - pathology ; Biomarkers - metabolism ; Brain ; Ca2 ; Calcium - metabolism ; Cyclic AMP Response Element-Binding Protein - metabolism ; Disease Models, Animal ; Glial Fibrillary Acidic Protein - metabolism ; Hippocampus - pathology ; Injuries ; JNK Mitogen-Activated Protein Kinases - metabolism ; JNK/SAPK ; Membrane Proteins - genetics ; Memory ; Mice, Inbred C57BL ; mitochondria ; Mitochondria - metabolism ; Models, Biological ; Mutation - genetics ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Original ; Oxidation-Reduction ; oxidative stress ; Phosphorylation ; Reactive Oxygen Species - metabolism ; S100 Proteins - metabolism ; Signal Transduction ; Superoxide Dismutase - metabolism ; Tetracycline ; Tetracyclines</subject><ispartof>Aging cell, 2017-02, Vol.16 (1), p.39-51</ispartof><rights>2016 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 The Anatomical Society and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</citedby><cites>FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242301/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1858567181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11560,25751,27922,27923,37010,37011,44588,46050,46474,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27623715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Takamasa</creatorcontrib><creatorcontrib>Takanashi, Yumi</creatorcontrib><creatorcontrib>Sugita, Koichi</creatorcontrib><creatorcontrib>Miyazawa, Masaki</creatorcontrib><creatorcontrib>Yanagihara, Rintaro</creatorcontrib><creatorcontrib>Yasuda, Kayo</creatorcontrib><creatorcontrib>Onouchi, Hiromi</creatorcontrib><creatorcontrib>Kawabe, Noboru</creatorcontrib><creatorcontrib>Nakata, Munehiro</creatorcontrib><creatorcontrib>Yamamoto, Yorihiro</creatorcontrib><creatorcontrib>Hartman, Phil S.</creatorcontrib><creatorcontrib>Ishii, Naoaki</creatorcontrib><title>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.</description><subject>aging</subject><subject>Aging - pathology</subject><subject>Amyloidosis</subject><subject>Animals</subject><subject>astrocyte</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Biomarkers - metabolism</subject><subject>Brain</subject><subject>Ca2</subject><subject>Calcium - metabolism</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Disease Models, Animal</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Injuries</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>JNK/SAPK</subject><subject>Membrane Proteins - genetics</subject><subject>Memory</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Original</subject><subject>Oxidation-Reduction</subject><subject>oxidative stress</subject><subject>Phosphorylation</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>S100 Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Tetracycline</subject><subject>Tetracyclines</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNqNks2L1DAYxoso7rp68Q-QgBcRZsxH03Q8LAzD-AEDXvQc0uRNJ0ub1KTdtXf_cDM76-iKiMkh4c3vfRKePEXxnOAlyeON0tAtCeWUPSjOSSnKxUrQ6uFpT-qz4klKVxgTscLscXFGRUWZIPy8-L71JrTgw5RQBKVHdw0ofJtzCaUBtIOEtJoSIJXGGPQ8AjJgQY8JKW-QhykGrzpk5mQnn_uDT8h5NO4B7d0wBK36YUpvkcrsDeqDgQ7ZEJFqnW9RE5XzT4tHVnUJnt2tF8WXd9vPmw-L3af3Hzfr3UJXpGQLzRu8YoxgpqDi1GBmCdWUgyYVbkq-IiXHSltlmlJTQ4itTVmDLVVjscgKF8XlUXeYmh6MBj9G1ckhul7FWQbl5P0T7_ayDdeS05IyTLLAqzuBGL5OkEbZu5Td75SH7KAkdVUzSjH7H5Tnn6l4xTP68g_0Kkwxm3pL1bzKP0h-Ua3qQDpvQ36iPojKtcCiLrkQdaaWf6HyNNA7HTxYl-v3Gl4fG3QMKUWwJzsIlod4yUO85G28MvzidwNP6M88ZYAcgZt8zfwPKbnebHdH0R-nONss</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Ishii, Takamasa</creator><creator>Takanashi, Yumi</creator><creator>Sugita, Koichi</creator><creator>Miyazawa, Masaki</creator><creator>Yanagihara, Rintaro</creator><creator>Yasuda, Kayo</creator><creator>Onouchi, Hiromi</creator><creator>Kawabe, Noboru</creator><creator>Nakata, Munehiro</creator><creator>Yamamoto, Yorihiro</creator><creator>Hartman, Phil S.</creator><creator>Ishii, Naoaki</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</title><author>Ishii, Takamasa ; Takanashi, Yumi ; Sugita, Koichi ; Miyazawa, Masaki ; Yanagihara, Rintaro ; Yasuda, Kayo ; Onouchi, Hiromi ; Kawabe, Noboru ; Nakata, Munehiro ; Yamamoto, Yorihiro ; Hartman, Phil S. ; Ishii, Naoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aging</topic><topic>Aging - pathology</topic><topic>Amyloidosis</topic><topic>Animals</topic><topic>astrocyte</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Biomarkers - metabolism</topic><topic>Brain</topic><topic>Ca2</topic><topic>Calcium - metabolism</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Disease Models, Animal</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Injuries</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>JNK/SAPK</topic><topic>Membrane Proteins - genetics</topic><topic>Memory</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Original</topic><topic>Oxidation-Reduction</topic><topic>oxidative stress</topic><topic>Phosphorylation</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>S100 Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Tetracycline</topic><topic>Tetracyclines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Takamasa</creatorcontrib><creatorcontrib>Takanashi, Yumi</creatorcontrib><creatorcontrib>Sugita, Koichi</creatorcontrib><creatorcontrib>Miyazawa, Masaki</creatorcontrib><creatorcontrib>Yanagihara, Rintaro</creatorcontrib><creatorcontrib>Yasuda, Kayo</creatorcontrib><creatorcontrib>Onouchi, Hiromi</creatorcontrib><creatorcontrib>Kawabe, Noboru</creatorcontrib><creatorcontrib>Nakata, Munehiro</creatorcontrib><creatorcontrib>Yamamoto, Yorihiro</creatorcontrib><creatorcontrib>Hartman, Phil S.</creatorcontrib><creatorcontrib>Ishii, Naoaki</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Takamasa</au><au>Takanashi, Yumi</au><au>Sugita, Koichi</au><au>Miyazawa, Masaki</au><au>Yanagihara, Rintaro</au><au>Yasuda, Kayo</au><au>Onouchi, Hiromi</au><au>Kawabe, Noboru</au><au>Nakata, Munehiro</au><au>Yamamoto, Yorihiro</au><au>Hartman, Phil S.</au><au>Ishii, Naoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2017-02</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>39</spage><epage>51</epage><pages>39-51</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>27623715</pmid><doi>10.1111/acel.12523</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2017-02, Vol.16 (1), p.39-51
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242301
source PubMed Central (Open access); Wiley Online Library Open Access; Publicly Available Content Database
subjects aging
Aging - pathology
Amyloidosis
Animals
astrocyte
Astrocytes - metabolism
Astrocytes - pathology
Biomarkers - metabolism
Brain
Ca2
Calcium - metabolism
Cyclic AMP Response Element-Binding Protein - metabolism
Disease Models, Animal
Glial Fibrillary Acidic Protein - metabolism
Hippocampus - pathology
Injuries
JNK Mitogen-Activated Protein Kinases - metabolism
JNK/SAPK
Membrane Proteins - genetics
Memory
Mice, Inbred C57BL
mitochondria
Mitochondria - metabolism
Models, Biological
Mutation - genetics
Neurons
Neurons - metabolism
Neurons - pathology
Original
Oxidation-Reduction
oxidative stress
Phosphorylation
Reactive Oxygen Species - metabolism
S100 Proteins - metabolism
Signal Transduction
Superoxide Dismutase - metabolism
Tetracycline
Tetracyclines
title Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20reactive%20oxygen%20species%20cause%20astrocyte%20defects%20and%20neuronal%20dysfunctions%20in%20the%20hippocampus:%20a%20new%20model%20for%20aging%20brain&rft.jtitle=Aging%20cell&rft.au=Ishii,%20Takamasa&rft.date=2017-02&rft.volume=16&rft.issue=1&rft.spage=39&rft.epage=51&rft.pages=39-51&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12523&rft_dat=%3Cgale_pubme%3EA707845778%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6143-c5b0933103ae652d03f12c25ec160b4591450acfadb4c2d11f8d48ef4abf07143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1858567181&rft_id=info:pmid/27623715&rft_galeid=A707845778&rfr_iscdi=true