Loading…

Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers

Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydr...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of microbiology 2017-03, Vol.57 (1), p.39-47
Main Authors: Ray, Subhasree, Kalia, Vipin Chandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c569t-cc13ec79a7ce38fb666986ca3e9a97f534489d89d81a6cb54147aa776dddd6ee3
cites cdi_FETCH-LOGICAL-c569t-cc13ec79a7ce38fb666986ca3e9a97f534489d89d81a6cb54147aa776dddd6ee3
container_end_page 47
container_issue 1
container_start_page 39
container_title Indian journal of microbiology
container_volume 57
creator Ray, Subhasree
Kalia, Vipin Chandra
description Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.
doi_str_mv 10.1007/s12088-016-0622-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5243247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312342201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-cc13ec79a7ce38fb666986ca3e9a97f534489d89d81a6cb54147aa776dddd6ee3</originalsourceid><addsrcrecordid>eNqNkclKBDEQhoMoLqMP4EUGvHiJZussCIIMbqDoQc-hOp3R1u7OmPSI8_ZmHBUVBEMgIfXVX5X6EdqmZJ8Sog4SZURrTKjERDKGxRJaJ0ZxrBQtlvOdCIm1MXQNbaT0SEghjSxW0RrTVGij9Do6vKpdDGUNzXAUWt9DGZo6tUPoquFNaGYPsyqG1xk0T9AF6H2m8CS_tz6mTbQyhib5rY9zgO5OT25H5_jy-uxidHyJXa7XY-co904ZUM5zPS6llEZLB9wbMGpccJF7qeabgnRlIahQAErJKi_pPR-go4XuZFq2vnK-6yM0dhLrFuLMBqjtz0hXP9j78GILJjgTKgvsfQjE8Dz1qbdtnZxvGuh8mCZLtdScmaLg_0HnmNIyo7u_0McwjV2exDvF8q8IzRRdUHnMKUU__uqbEjt30S5ctNlFO3fRipyz8_3DXxmftmWALYCUQ929j99K_6n6BqO8qHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865248901</pqid></control><display><type>article</type><title>Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers</title><source>Springer Link</source><source>PubMed Central</source><creator>Ray, Subhasree ; Kalia, Vipin Chandra</creator><creatorcontrib>Ray, Subhasree ; Kalia, Vipin Chandra</creatorcontrib><description>Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.</description><identifier>ISSN: 0046-8991</identifier><identifier>EISSN: 0973-7715</identifier><identifier>DOI: 10.1007/s12088-016-0622-4</identifier><identifier>PMID: 28148978</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Biochemistry ; Biodegradation ; Biomedical and Life Sciences ; Biopolymers ; Life Sciences ; Medical Microbiology ; Microbiology ; Polyhydroxyalkanoates ; Polyhydroxybutyrate ; Polymers ; Review ; Review Article</subject><ispartof>Indian journal of microbiology, 2017-03, Vol.57 (1), p.39-47</ispartof><rights>Association of Microbiologists of India 2016</rights><rights>Indian Journal of Microbiology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-cc13ec79a7ce38fb666986ca3e9a97f534489d89d81a6cb54147aa776dddd6ee3</citedby><cites>FETCH-LOGICAL-c569t-cc13ec79a7ce38fb666986ca3e9a97f534489d89d81a6cb54147aa776dddd6ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243247/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243247/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,313,314,727,780,784,792,885,27920,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28148978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, Subhasree</creatorcontrib><creatorcontrib>Kalia, Vipin Chandra</creatorcontrib><title>Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers</title><title>Indian journal of microbiology</title><addtitle>Indian J Microbiol</addtitle><addtitle>Indian J Microbiol</addtitle><description>Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.</description><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biopolymers</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxybutyrate</subject><subject>Polymers</subject><subject>Review</subject><subject>Review Article</subject><issn>0046-8991</issn><issn>0973-7715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkclKBDEQhoMoLqMP4EUGvHiJZussCIIMbqDoQc-hOp3R1u7OmPSI8_ZmHBUVBEMgIfXVX5X6EdqmZJ8Sog4SZURrTKjERDKGxRJaJ0ZxrBQtlvOdCIm1MXQNbaT0SEghjSxW0RrTVGij9Do6vKpdDGUNzXAUWt9DGZo6tUPoquFNaGYPsyqG1xk0T9AF6H2m8CS_tz6mTbQyhib5rY9zgO5OT25H5_jy-uxidHyJXa7XY-co904ZUM5zPS6llEZLB9wbMGpccJF7qeabgnRlIahQAErJKi_pPR-go4XuZFq2vnK-6yM0dhLrFuLMBqjtz0hXP9j78GILJjgTKgvsfQjE8Dz1qbdtnZxvGuh8mCZLtdScmaLg_0HnmNIyo7u_0McwjV2exDvF8q8IzRRdUHnMKUU__uqbEjt30S5ctNlFO3fRipyz8_3DXxmftmWALYCUQ929j99K_6n6BqO8qHc</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Ray, Subhasree</creator><creator>Kalia, Vipin Chandra</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170301</creationdate><title>Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers</title><author>Ray, Subhasree ; Kalia, Vipin Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-cc13ec79a7ce38fb666986ca3e9a97f534489d89d81a6cb54147aa776dddd6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biopolymers</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxybutyrate</topic><topic>Polymers</topic><topic>Review</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Subhasree</creatorcontrib><creatorcontrib>Kalia, Vipin Chandra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indian journal of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Subhasree</au><au>Kalia, Vipin Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers</atitle><jtitle>Indian journal of microbiology</jtitle><stitle>Indian J Microbiol</stitle><addtitle>Indian J Microbiol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>57</volume><issue>1</issue><spage>39</spage><epage>47</epage><pages>39-47</pages><issn>0046-8991</issn><eissn>0973-7715</eissn><abstract>Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>28148978</pmid><doi>10.1007/s12088-016-0622-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-8991
ispartof Indian journal of microbiology, 2017-03, Vol.57 (1), p.39-47
issn 0046-8991
0973-7715
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5243247
source Springer Link; PubMed Central
subjects Biochemistry
Biodegradation
Biomedical and Life Sciences
Biopolymers
Life Sciences
Medical Microbiology
Microbiology
Polyhydroxyalkanoates
Polyhydroxybutyrate
Polymers
Review
Review Article
title Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Cometabolism%20and%20Polyhydroxyalkanoate%20Co-polymers&rft.jtitle=Indian%20journal%20of%20microbiology&rft.au=Ray,%20Subhasree&rft.date=2017-03-01&rft.volume=57&rft.issue=1&rft.spage=39&rft.epage=47&rft.pages=39-47&rft.issn=0046-8991&rft.eissn=0973-7715&rft_id=info:doi/10.1007/s12088-016-0622-4&rft_dat=%3Cproquest_pubme%3E4312342201%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c569t-cc13ec79a7ce38fb666986ca3e9a97f534489d89d81a6cb54147aa776dddd6ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865248901&rft_id=info:pmid/28148978&rfr_iscdi=true