Loading…

Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures

Objective To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture. Results We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Est...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology letters 2017-02, Vol.39 (2), p.339-350
Main Authors: Sharma, Vishal S., Khalife, Rana, Tostoes, Rui, Leung, Leonard, Kinsella, Rose, Ruban, Ludmilla, Veraitch, Farlan S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53
cites cdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53
container_end_page 350
container_issue 2
container_start_page 339
container_title Biotechnology letters
container_volume 39
creator Sharma, Vishal S.
Khalife, Rana
Tostoes, Rui
Leung, Leonard
Kinsella, Rose
Ruban, Ludmilla
Veraitch, Farlan S.
description Objective To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture. Results We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating. Conclusions Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture.
doi_str_mv 10.1007/s10529-016-2244-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5247545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879988602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</originalsourceid><addsrcrecordid>eNqNkk9rFTEUxYMo9ln9AG4k4MbNaP5NbrIRpLQqFNzo1pA3k7QpM8mYTJR-ezN9tVRB6CqE-7sn594chF5S8pYSAu8KJT3THaGyY0yIDh6hHe2BdxJAPkY7QgXteqHZEXpWyhUhRAOBp-iIgaJMMbpD309tnq5xdmuIdsJj8N5lF9dg15AiTh5f1tlGvEw1hyWtrYTL6mY8uGkqOEQ8hyGnX-2GSy2Li2XrG-q01uzKc_TE26m4F7fnMfp2dvr15FN3_uXj55MP593Q7K6dZFzJYRxBa8G8HMCPoh8HAlpKP3qxZ-B7RRXfE8WllkA8aDYysI4r63p-jN4fdJe6n904NJvZTmbJYbb52iQbzN-VGC7NRfppeiagF5vAm1uBnH5UV1Yzh7LNaKNLtRiqmjelJGEPQKXijGtQD0C5BN4aoKGv_0GvUs3tT24Em01NYKPogWo7LyU7fzciJWbLhDlkwrRMmC0TZut5dX83dx1_QtAAdgBKK8ULl-89_V_V3y3mwrs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865249077</pqid></control><display><type>article</type><title>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</title><source>Springer Link</source><creator>Sharma, Vishal S. ; Khalife, Rana ; Tostoes, Rui ; Leung, Leonard ; Kinsella, Rose ; Ruban, Ludmilla ; Veraitch, Farlan S.</creator><creatorcontrib>Sharma, Vishal S. ; Khalife, Rana ; Tostoes, Rui ; Leung, Leonard ; Kinsella, Rose ; Ruban, Ludmilla ; Veraitch, Farlan S.</creatorcontrib><description>Objective To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture. Results We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating. Conclusions Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-016-2244-7</identifier><identifier>PMID: 27812821</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied Microbiology ; Biochemistry ; Biomedical and Life Sciences ; Bioreactors ; Biotechnology ; Cell Culture Techniques ; Cell differentiation ; Cell Differentiation - physiology ; Culture ; Differentiation ; Embryoid Bodies - cytology ; Humans ; Induced Pluripotent Stem Cells - cytology ; Life Sciences ; Markers ; Membrane reactors ; Microbiology ; Optimization ; Original Research Paper ; Pluripotent Stem Cells - cytology ; Protocol ; Retina - cytology ; Shaking ; Stem cells ; Translations</subject><ispartof>Biotechnology letters, 2017-02, Vol.39 (2), p.339-350</ispartof><rights>The Author(s) 2016</rights><rights>Biotechnology Letters is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</citedby><cites>FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27812821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Vishal S.</creatorcontrib><creatorcontrib>Khalife, Rana</creatorcontrib><creatorcontrib>Tostoes, Rui</creatorcontrib><creatorcontrib>Leung, Leonard</creatorcontrib><creatorcontrib>Kinsella, Rose</creatorcontrib><creatorcontrib>Ruban, Ludmilla</creatorcontrib><creatorcontrib>Veraitch, Farlan S.</creatorcontrib><title>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objective To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture. Results We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating. Conclusions Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture.</description><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Culture</subject><subject>Differentiation</subject><subject>Embryoid Bodies - cytology</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Life Sciences</subject><subject>Markers</subject><subject>Membrane reactors</subject><subject>Microbiology</subject><subject>Optimization</subject><subject>Original Research Paper</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Protocol</subject><subject>Retina - cytology</subject><subject>Shaking</subject><subject>Stem cells</subject><subject>Translations</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkk9rFTEUxYMo9ln9AG4k4MbNaP5NbrIRpLQqFNzo1pA3k7QpM8mYTJR-ezN9tVRB6CqE-7sn594chF5S8pYSAu8KJT3THaGyY0yIDh6hHe2BdxJAPkY7QgXteqHZEXpWyhUhRAOBp-iIgaJMMbpD309tnq5xdmuIdsJj8N5lF9dg15AiTh5f1tlGvEw1hyWtrYTL6mY8uGkqOEQ8hyGnX-2GSy2Li2XrG-q01uzKc_TE26m4F7fnMfp2dvr15FN3_uXj55MP593Q7K6dZFzJYRxBa8G8HMCPoh8HAlpKP3qxZ-B7RRXfE8WllkA8aDYysI4r63p-jN4fdJe6n904NJvZTmbJYbb52iQbzN-VGC7NRfppeiagF5vAm1uBnH5UV1Yzh7LNaKNLtRiqmjelJGEPQKXijGtQD0C5BN4aoKGv_0GvUs3tT24Em01NYKPogWo7LyU7fzciJWbLhDlkwrRMmC0TZut5dX83dx1_QtAAdgBKK8ULl-89_V_V3y3mwrs</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Sharma, Vishal S.</creator><creator>Khalife, Rana</creator><creator>Tostoes, Rui</creator><creator>Leung, Leonard</creator><creator>Kinsella, Rose</creator><creator>Ruban, Ludmilla</creator><creator>Veraitch, Farlan S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20170201</creationdate><title>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</title><author>Sharma, Vishal S. ; Khalife, Rana ; Tostoes, Rui ; Leung, Leonard ; Kinsella, Rose ; Ruban, Ludmilla ; Veraitch, Farlan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Culture</topic><topic>Differentiation</topic><topic>Embryoid Bodies - cytology</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Life Sciences</topic><topic>Markers</topic><topic>Membrane reactors</topic><topic>Microbiology</topic><topic>Optimization</topic><topic>Original Research Paper</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Protocol</topic><topic>Retina - cytology</topic><topic>Shaking</topic><topic>Stem cells</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Vishal S.</creatorcontrib><creatorcontrib>Khalife, Rana</creatorcontrib><creatorcontrib>Tostoes, Rui</creatorcontrib><creatorcontrib>Leung, Leonard</creatorcontrib><creatorcontrib>Kinsella, Rose</creatorcontrib><creatorcontrib>Ruban, Ludmilla</creatorcontrib><creatorcontrib>Veraitch, Farlan S.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Vishal S.</au><au>Khalife, Rana</au><au>Tostoes, Rui</au><au>Leung, Leonard</au><au>Kinsella, Rose</au><au>Ruban, Ludmilla</au><au>Veraitch, Farlan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>39</volume><issue>2</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>Objective To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture. Results We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating. Conclusions Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>27812821</pmid><doi>10.1007/s10529-016-2244-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2017-02, Vol.39 (2), p.339-350
issn 0141-5492
1573-6776
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5247545
source Springer Link
subjects Applied Microbiology
Biochemistry
Biomedical and Life Sciences
Bioreactors
Biotechnology
Cell Culture Techniques
Cell differentiation
Cell Differentiation - physiology
Culture
Differentiation
Embryoid Bodies - cytology
Humans
Induced Pluripotent Stem Cells - cytology
Life Sciences
Markers
Membrane reactors
Microbiology
Optimization
Original Research Paper
Pluripotent Stem Cells - cytology
Protocol
Retina - cytology
Shaking
Stem cells
Translations
title Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20retinal%20differentiation%20of%20human%20pluripotent%20stem%20cells%20in%20microwell%20suspension%20cultures&rft.jtitle=Biotechnology%20letters&rft.au=Sharma,%20Vishal%20S.&rft.date=2017-02-01&rft.volume=39&rft.issue=2&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-016-2244-7&rft_dat=%3Cproquest_pubme%3E1879988602%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865249077&rft_id=info:pmid/27812821&rfr_iscdi=true