Loading…
Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures
Objective To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture. Results We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Est...
Saved in:
Published in: | Biotechnology letters 2017-02, Vol.39 (2), p.339-350 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53 |
container_end_page | 350 |
container_issue | 2 |
container_start_page | 339 |
container_title | Biotechnology letters |
container_volume | 39 |
creator | Sharma, Vishal S. Khalife, Rana Tostoes, Rui Leung, Leonard Kinsella, Rose Ruban, Ludmilla Veraitch, Farlan S. |
description | Objective
To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture.
Results
We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating.
Conclusions
Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture. |
doi_str_mv | 10.1007/s10529-016-2244-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5247545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879988602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</originalsourceid><addsrcrecordid>eNqNkk9rFTEUxYMo9ln9AG4k4MbNaP5NbrIRpLQqFNzo1pA3k7QpM8mYTJR-ezN9tVRB6CqE-7sn594chF5S8pYSAu8KJT3THaGyY0yIDh6hHe2BdxJAPkY7QgXteqHZEXpWyhUhRAOBp-iIgaJMMbpD309tnq5xdmuIdsJj8N5lF9dg15AiTh5f1tlGvEw1hyWtrYTL6mY8uGkqOEQ8hyGnX-2GSy2Li2XrG-q01uzKc_TE26m4F7fnMfp2dvr15FN3_uXj55MP593Q7K6dZFzJYRxBa8G8HMCPoh8HAlpKP3qxZ-B7RRXfE8WllkA8aDYysI4r63p-jN4fdJe6n904NJvZTmbJYbb52iQbzN-VGC7NRfppeiagF5vAm1uBnH5UV1Yzh7LNaKNLtRiqmjelJGEPQKXijGtQD0C5BN4aoKGv_0GvUs3tT24Em01NYKPogWo7LyU7fzciJWbLhDlkwrRMmC0TZut5dX83dx1_QtAAdgBKK8ULl-89_V_V3y3mwrs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865249077</pqid></control><display><type>article</type><title>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</title><source>Springer Link</source><creator>Sharma, Vishal S. ; Khalife, Rana ; Tostoes, Rui ; Leung, Leonard ; Kinsella, Rose ; Ruban, Ludmilla ; Veraitch, Farlan S.</creator><creatorcontrib>Sharma, Vishal S. ; Khalife, Rana ; Tostoes, Rui ; Leung, Leonard ; Kinsella, Rose ; Ruban, Ludmilla ; Veraitch, Farlan S.</creatorcontrib><description>Objective
To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture.
Results
We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating.
Conclusions
Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-016-2244-7</identifier><identifier>PMID: 27812821</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied Microbiology ; Biochemistry ; Biomedical and Life Sciences ; Bioreactors ; Biotechnology ; Cell Culture Techniques ; Cell differentiation ; Cell Differentiation - physiology ; Culture ; Differentiation ; Embryoid Bodies - cytology ; Humans ; Induced Pluripotent Stem Cells - cytology ; Life Sciences ; Markers ; Membrane reactors ; Microbiology ; Optimization ; Original Research Paper ; Pluripotent Stem Cells - cytology ; Protocol ; Retina - cytology ; Shaking ; Stem cells ; Translations</subject><ispartof>Biotechnology letters, 2017-02, Vol.39 (2), p.339-350</ispartof><rights>The Author(s) 2016</rights><rights>Biotechnology Letters is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</citedby><cites>FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27812821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Vishal S.</creatorcontrib><creatorcontrib>Khalife, Rana</creatorcontrib><creatorcontrib>Tostoes, Rui</creatorcontrib><creatorcontrib>Leung, Leonard</creatorcontrib><creatorcontrib>Kinsella, Rose</creatorcontrib><creatorcontrib>Ruban, Ludmilla</creatorcontrib><creatorcontrib>Veraitch, Farlan S.</creatorcontrib><title>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objective
To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture.
Results
We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating.
Conclusions
Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture.</description><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Culture</subject><subject>Differentiation</subject><subject>Embryoid Bodies - cytology</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Life Sciences</subject><subject>Markers</subject><subject>Membrane reactors</subject><subject>Microbiology</subject><subject>Optimization</subject><subject>Original Research Paper</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Protocol</subject><subject>Retina - cytology</subject><subject>Shaking</subject><subject>Stem cells</subject><subject>Translations</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkk9rFTEUxYMo9ln9AG4k4MbNaP5NbrIRpLQqFNzo1pA3k7QpM8mYTJR-ezN9tVRB6CqE-7sn594chF5S8pYSAu8KJT3THaGyY0yIDh6hHe2BdxJAPkY7QgXteqHZEXpWyhUhRAOBp-iIgaJMMbpD309tnq5xdmuIdsJj8N5lF9dg15AiTh5f1tlGvEw1hyWtrYTL6mY8uGkqOEQ8hyGnX-2GSy2Li2XrG-q01uzKc_TE26m4F7fnMfp2dvr15FN3_uXj55MP593Q7K6dZFzJYRxBa8G8HMCPoh8HAlpKP3qxZ-B7RRXfE8WllkA8aDYysI4r63p-jN4fdJe6n904NJvZTmbJYbb52iQbzN-VGC7NRfppeiagF5vAm1uBnH5UV1Yzh7LNaKNLtRiqmjelJGEPQKXijGtQD0C5BN4aoKGv_0GvUs3tT24Em01NYKPogWo7LyU7fzciJWbLhDlkwrRMmC0TZut5dX83dx1_QtAAdgBKK8ULl-89_V_V3y3mwrs</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Sharma, Vishal S.</creator><creator>Khalife, Rana</creator><creator>Tostoes, Rui</creator><creator>Leung, Leonard</creator><creator>Kinsella, Rose</creator><creator>Ruban, Ludmilla</creator><creator>Veraitch, Farlan S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20170201</creationdate><title>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</title><author>Sharma, Vishal S. ; Khalife, Rana ; Tostoes, Rui ; Leung, Leonard ; Kinsella, Rose ; Ruban, Ludmilla ; Veraitch, Farlan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Culture</topic><topic>Differentiation</topic><topic>Embryoid Bodies - cytology</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Life Sciences</topic><topic>Markers</topic><topic>Membrane reactors</topic><topic>Microbiology</topic><topic>Optimization</topic><topic>Original Research Paper</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Protocol</topic><topic>Retina - cytology</topic><topic>Shaking</topic><topic>Stem cells</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Vishal S.</creatorcontrib><creatorcontrib>Khalife, Rana</creatorcontrib><creatorcontrib>Tostoes, Rui</creatorcontrib><creatorcontrib>Leung, Leonard</creatorcontrib><creatorcontrib>Kinsella, Rose</creatorcontrib><creatorcontrib>Ruban, Ludmilla</creatorcontrib><creatorcontrib>Veraitch, Farlan S.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Vishal S.</au><au>Khalife, Rana</au><au>Tostoes, Rui</au><au>Leung, Leonard</au><au>Kinsella, Rose</au><au>Ruban, Ludmilla</au><au>Veraitch, Farlan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>39</volume><issue>2</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>Objective
To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture.
Results
We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating.
Conclusions
Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>27812821</pmid><doi>10.1007/s10529-016-2244-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-5492 |
ispartof | Biotechnology letters, 2017-02, Vol.39 (2), p.339-350 |
issn | 0141-5492 1573-6776 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5247545 |
source | Springer Link |
subjects | Applied Microbiology Biochemistry Biomedical and Life Sciences Bioreactors Biotechnology Cell Culture Techniques Cell differentiation Cell Differentiation - physiology Culture Differentiation Embryoid Bodies - cytology Humans Induced Pluripotent Stem Cells - cytology Life Sciences Markers Membrane reactors Microbiology Optimization Original Research Paper Pluripotent Stem Cells - cytology Protocol Retina - cytology Shaking Stem cells Translations |
title | Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20retinal%20differentiation%20of%20human%20pluripotent%20stem%20cells%20in%20microwell%20suspension%20cultures&rft.jtitle=Biotechnology%20letters&rft.au=Sharma,%20Vishal%20S.&rft.date=2017-02-01&rft.volume=39&rft.issue=2&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-016-2244-7&rft_dat=%3Cproquest_pubme%3E1879988602%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-62386cdd79942f6c7fd45dc07966fdf4b27f58183b08369670f792d27ae38ae53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865249077&rft_id=info:pmid/27812821&rfr_iscdi=true |