Loading…
Formation of an Actin-Like Filament Concurrent with the Enzymatic Synthesis of Inorganic Polyphosphate
Inorganic polyphosphate (poly P), a chain of hundreds of phosphate residues linked by ATP-like bonds, is found in every cell in nature and is commonly produced from ATP by poly P kinases (e.g., PPK1). Dictyostelium discoideum, the social slime mold, possesses a PPK activity (DdPPK1) with sequence si...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2004-11, Vol.101 (45), p.15876-15880 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inorganic polyphosphate (poly P), a chain of hundreds of phosphate residues linked by ATP-like bonds, is found in every cell in nature and is commonly produced from ATP by poly P kinases (e.g., PPK1). Dictyostelium discoideum, the social slime mold, possesses a PPK activity (DdPPK1) with sequence similarity to bacterial PPKs. We find here a previously unrecognized PPK (DdPPK2) in D. discoideum with the sequences and properties of actin-related proteins (Arps) that are similar to muscle actins in size, properties, and globular-filamentous structural transitions. Significantly, the unique actin inhibitors, phalloidin and DNase I, also inhibit synthesis of poly P by DdPPK2. Thus, this particular Arp complex is an enzyme that can polymerize into an actin-like filament concurrent with its synthesis of a poly P chain in a fully reversible reaction. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0406923101 |