Loading…
Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures
The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga 1−x Mn x N/GaN(template) bilayers of various Mn concentration x . I...
Saved in:
Published in: | Scientific reports 2017-02, Vol.7 (1), p.41877-41877, Article 41877 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-6fb3ed07fd71a77e59583e771daca7f1d59cd34cf9de828580e7f9bd18b003243 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-6fb3ed07fd71a77e59583e771daca7f1d59cd34cf9de828580e7f9bd18b003243 |
container_end_page | 41877 |
container_issue | 1 |
container_start_page | 41877 |
container_title | Scientific reports |
container_volume | 7 |
creator | Janicki, L. Kunert, G. Sawicki, M. Piskorska-Hommel, E. Gas, K. Jakiela, R. Hommel, D. Kudrawiec, R. |
description | The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga
1−x
Mn
x
N/GaN(template) bilayers of various Mn concentration
x
. It is shown that the Fermi level in (Ga,Mn)N is strongly pinned in the middle of the band gap and the thickness of the depletion layer is negligibly small. For
x
> 0.1% the Fermi level is located about 1.25–1.55 eV above the valence band, that is very close to, but visibly below the Mn-related Mn
2+
/Mn
3+
impurity band. The accumulated data allows us to estimate the Mn-related band offsets at the (Ga,Mn)N/GaN interface. It is found that most of the band gap change in (Ga,Mn)N takes place in the valence band on the absolute scale and amounts to −0.028 ± 0.008 eV/% Mn. The strong Fermi level pinning in the middle of the band gap, no carrier conductivity within the Mn-related impurity band, and a good homogeneity enable a novel functionality of (Ga,Mn)N as a semi-insulating buffer layers for applications in GaN-based heterostuctures. |
doi_str_mv | 10.1038/srep41877 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5288782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901685752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6fb3ed07fd71a77e59583e771daca7f1d59cd34cf9de828580e7f9bd18b003243</originalsourceid><addsrcrecordid>eNplkVFLwzAUhYMoKtMH_4AUfHFiXZI2S_IiiLgp6ETQ55A2N7PSpTNpBf-9KdMxNVySG87HyQ0HoSOCLwjOxCh4WOZEcL6F9inOWUozSrc3-j10GMIbjotRmRO5i_aoIAxzKfbR0wT8okpq-IA60c4kRdxC0lgboA2JgbbXnW6rxiVVX6Gr483Nk9OpPn9ww9loqmdJaH1Xtp2HcIB2rK4DHH6fA_QyuXm-vk3vH6d311f3aclw3qZjW2RgMLeGE805MMlEBpwTo0vNLTFMlibLSysNCCqYwMCtLAwRBcYZzbMBulz5LrtiAaYE13pdq6WvFtp_qkZX6rfiqlc1bz4Uo0JwQaPB6beBb947CK1aVKGEutYOmi4oIsaM5VxIHNGTP-hb03kXv6eIxGQsGGe94XBFlb4JMRa7HoZg1Wel1llF9nhz-jX5k0wEzlZAiJKbg9948p_bF6P9nf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901685752</pqid></control><display><type>article</type><title>Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures</title><source>PubMed Central(OA)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Janicki, L. ; Kunert, G. ; Sawicki, M. ; Piskorska-Hommel, E. ; Gas, K. ; Jakiela, R. ; Hommel, D. ; Kudrawiec, R.</creator><creatorcontrib>Janicki, L. ; Kunert, G. ; Sawicki, M. ; Piskorska-Hommel, E. ; Gas, K. ; Jakiela, R. ; Hommel, D. ; Kudrawiec, R.</creatorcontrib><description>The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga
1−x
Mn
x
N/GaN(template) bilayers of various Mn concentration
x
. It is shown that the Fermi level in (Ga,Mn)N is strongly pinned in the middle of the band gap and the thickness of the depletion layer is negligibly small. For
x
> 0.1% the Fermi level is located about 1.25–1.55 eV above the valence band, that is very close to, but visibly below the Mn-related Mn
2+
/Mn
3+
impurity band. The accumulated data allows us to estimate the Mn-related band offsets at the (Ga,Mn)N/GaN interface. It is found that most of the band gap change in (Ga,Mn)N takes place in the valence band on the absolute scale and amounts to −0.028 ± 0.008 eV/% Mn. The strong Fermi level pinning in the middle of the band gap, no carrier conductivity within the Mn-related impurity band, and a good homogeneity enable a novel functionality of (Ga,Mn)N as a semi-insulating buffer layers for applications in GaN-based heterostuctures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep41877</identifier><identifier>PMID: 28150798</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000 ; 639/766/119/2793 ; Band gap ; Electrons ; Humanities and Social Sciences ; Manganese ; multidisciplinary ; Science</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.41877-41877, Article 41877</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-6fb3ed07fd71a77e59583e771daca7f1d59cd34cf9de828580e7f9bd18b003243</citedby><cites>FETCH-LOGICAL-c504t-6fb3ed07fd71a77e59583e771daca7f1d59cd34cf9de828580e7f9bd18b003243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1901685752/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1901685752?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28150798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janicki, L.</creatorcontrib><creatorcontrib>Kunert, G.</creatorcontrib><creatorcontrib>Sawicki, M.</creatorcontrib><creatorcontrib>Piskorska-Hommel, E.</creatorcontrib><creatorcontrib>Gas, K.</creatorcontrib><creatorcontrib>Jakiela, R.</creatorcontrib><creatorcontrib>Hommel, D.</creatorcontrib><creatorcontrib>Kudrawiec, R.</creatorcontrib><title>Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga
1−x
Mn
x
N/GaN(template) bilayers of various Mn concentration
x
. It is shown that the Fermi level in (Ga,Mn)N is strongly pinned in the middle of the band gap and the thickness of the depletion layer is negligibly small. For
x
> 0.1% the Fermi level is located about 1.25–1.55 eV above the valence band, that is very close to, but visibly below the Mn-related Mn
2+
/Mn
3+
impurity band. The accumulated data allows us to estimate the Mn-related band offsets at the (Ga,Mn)N/GaN interface. It is found that most of the band gap change in (Ga,Mn)N takes place in the valence band on the absolute scale and amounts to −0.028 ± 0.008 eV/% Mn. The strong Fermi level pinning in the middle of the band gap, no carrier conductivity within the Mn-related impurity band, and a good homogeneity enable a novel functionality of (Ga,Mn)N as a semi-insulating buffer layers for applications in GaN-based heterostuctures.</description><subject>639/766/119/1000</subject><subject>639/766/119/2793</subject><subject>Band gap</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Manganese</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkVFLwzAUhYMoKtMH_4AUfHFiXZI2S_IiiLgp6ETQ55A2N7PSpTNpBf-9KdMxNVySG87HyQ0HoSOCLwjOxCh4WOZEcL6F9inOWUozSrc3-j10GMIbjotRmRO5i_aoIAxzKfbR0wT8okpq-IA60c4kRdxC0lgboA2JgbbXnW6rxiVVX6Gr483Nk9OpPn9ww9loqmdJaH1Xtp2HcIB2rK4DHH6fA_QyuXm-vk3vH6d311f3aclw3qZjW2RgMLeGE805MMlEBpwTo0vNLTFMlibLSysNCCqYwMCtLAwRBcYZzbMBulz5LrtiAaYE13pdq6WvFtp_qkZX6rfiqlc1bz4Uo0JwQaPB6beBb947CK1aVKGEutYOmi4oIsaM5VxIHNGTP-hb03kXv6eIxGQsGGe94XBFlb4JMRa7HoZg1Wel1llF9nhz-jX5k0wEzlZAiJKbg9948p_bF6P9nf4</recordid><startdate>20170202</startdate><enddate>20170202</enddate><creator>Janicki, L.</creator><creator>Kunert, G.</creator><creator>Sawicki, M.</creator><creator>Piskorska-Hommel, E.</creator><creator>Gas, K.</creator><creator>Jakiela, R.</creator><creator>Hommel, D.</creator><creator>Kudrawiec, R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170202</creationdate><title>Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures</title><author>Janicki, L. ; Kunert, G. ; Sawicki, M. ; Piskorska-Hommel, E. ; Gas, K. ; Jakiela, R. ; Hommel, D. ; Kudrawiec, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6fb3ed07fd71a77e59583e771daca7f1d59cd34cf9de828580e7f9bd18b003243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/119/1000</topic><topic>639/766/119/2793</topic><topic>Band gap</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Manganese</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janicki, L.</creatorcontrib><creatorcontrib>Kunert, G.</creatorcontrib><creatorcontrib>Sawicki, M.</creatorcontrib><creatorcontrib>Piskorska-Hommel, E.</creatorcontrib><creatorcontrib>Gas, K.</creatorcontrib><creatorcontrib>Jakiela, R.</creatorcontrib><creatorcontrib>Hommel, D.</creatorcontrib><creatorcontrib>Kudrawiec, R.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janicki, L.</au><au>Kunert, G.</au><au>Sawicki, M.</au><au>Piskorska-Hommel, E.</au><au>Gas, K.</au><au>Jakiela, R.</au><au>Hommel, D.</au><au>Kudrawiec, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-02</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>41877</spage><epage>41877</epage><pages>41877-41877</pages><artnum>41877</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga
1−x
Mn
x
N/GaN(template) bilayers of various Mn concentration
x
. It is shown that the Fermi level in (Ga,Mn)N is strongly pinned in the middle of the band gap and the thickness of the depletion layer is negligibly small. For
x
> 0.1% the Fermi level is located about 1.25–1.55 eV above the valence band, that is very close to, but visibly below the Mn-related Mn
2+
/Mn
3+
impurity band. The accumulated data allows us to estimate the Mn-related band offsets at the (Ga,Mn)N/GaN interface. It is found that most of the band gap change in (Ga,Mn)N takes place in the valence band on the absolute scale and amounts to −0.028 ± 0.008 eV/% Mn. The strong Fermi level pinning in the middle of the band gap, no carrier conductivity within the Mn-related impurity band, and a good homogeneity enable a novel functionality of (Ga,Mn)N as a semi-insulating buffer layers for applications in GaN-based heterostuctures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28150798</pmid><doi>10.1038/srep41877</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-02, Vol.7 (1), p.41877-41877, Article 41877 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5288782 |
source | PubMed Central(OA); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/119/1000 639/766/119/2793 Band gap Electrons Humanities and Social Sciences Manganese multidisciplinary Science |
title | Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%20level%20and%20bands%20offsets%20determination%20in%20insulating%20(Ga,Mn)N/GaN%20structures&rft.jtitle=Scientific%20reports&rft.au=Janicki,%20L.&rft.date=2017-02-02&rft.volume=7&rft.issue=1&rft.spage=41877&rft.epage=41877&rft.pages=41877-41877&rft.artnum=41877&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep41877&rft_dat=%3Cproquest_pubme%3E1901685752%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-6fb3ed07fd71a77e59583e771daca7f1d59cd34cf9de828580e7f9bd18b003243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901685752&rft_id=info:pmid/28150798&rfr_iscdi=true |