Loading…

A Perspective on CRN Proteins in the Genomics Age: Evolution, Classification, Delivery and Function Revisited

Plant associated microbes rely on secreted virulence factors (effectors) to modulate host immunity and ensure progressive infection. Amongst the secreted protein repertoires defined and studied in pathogens to date, the CRNs (for CRinkling and Necrosis) have emerged as one of only a few highly conse...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2017-02, Vol.8, p.99-99
Main Authors: Amaro, Tiago M M M, Thilliez, Gaëtan J A, Motion, Graham B, Huitema, Edgar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant associated microbes rely on secreted virulence factors (effectors) to modulate host immunity and ensure progressive infection. Amongst the secreted protein repertoires defined and studied in pathogens to date, the CRNs (for CRinkling and Necrosis) have emerged as one of only a few highly conserved protein families, spread across several kingdoms. CRN proteins were first identified in plant pathogenic oomycetes where they were found to be modular factors that are secreted and translocated inside host cells by means of a conserved N-terminal domain. Subsequent localization and functional studies have led to the view that CRN C-termini execute their presumed effector function in the host nucleus, targeting processes required for immunity. These findings have led to great interest in this large protein family and driven the identification of additional CRN-like proteins in other organisms. The identification of CRN proteins and subsequent functional studies have markedly increased the number of candidate CRN protein sequences, expanded the range of phenotypes tentatively associated with function and revealed some of their molecular functions toward virulence. The increased number of characterized CRNs also has presented a set of challenges that may impede significant progress in the future. Here, we summarize our current understanding of the CRNs and re-assess some basic assumptions regarding this protein family. We will discuss the latest findings on CRN biology and highlight exciting new hypotheses that have emanated from the field. Finally, we will discuss new approaches to study CRN functions that would lead to a better understanding of CRN effector biology as well as the processes that lead to host susceptibility and immunity.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2017.00099