Loading…
Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs
In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for study...
Saved in:
Published in: | BMC genomics 2017-02, Vol.18 (1), p.148-148, Article 148 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43 |
container_end_page | 148 |
container_issue | 1 |
container_start_page | 148 |
container_title | BMC genomics |
container_volume | 18 |
creator | Wang, Fu Li, Yang Wu, Xiaoshan Yang, Min Cong, Wei Fan, Zhipeng Wang, Jinsong Zhang, Chunmei Du, Jie Wang, Songlin |
description | In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis.
We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars.
This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research. |
doi_str_mv | 10.1186/s12864-017-3546-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5303240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4317919121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhoMotlZ_gBsJuHEzmu_EjVCKX1Ba0O5DJpM7NzWTjEmmcn-Jf9dM77W0LoSEHE6evJyT8wLwEqO3GCvxrmCiBOsQlh3lTHTsETjGTOKOYMEe34uPwLNSrlEDFeFPwRFRWEmJ5DH4fZVNLDb7uabJQRNN2BVfYNpAmwYfx5YaYEgtiCl2h9y3i9MCt37chrZrgXXrYHbjEkxNeQejq79S_nErYoo1g4M--upN9Smu2dnlyUQXK5xSMLm0azg1xNQlOzj7sTwHTzYmFPficJ6A758-Xp196c4vP389Oz3vLOO8dhhZQnrGpMUcScMGq5zEwlJHjVhXLzHvmXGDsL2wijnJTY8pdlRuGD0BH_aq89JPbrCtomyCnrOfTN7pZLx-eBP9Vo_pRnOKKGGoCbw5COT0c3Gl6skX60Jo3aWl6DYlyaligjT09T_odVpy---iCWWKqPeSoP9RbWSU4cbwRuE9ZXMqJbvNXckY6dUaem8N3SauV2votddX93u9e_HXC_QP19u3nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873412035</pqid></control><display><type>article</type><title>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Wang, Fu ; Li, Yang ; Wu, Xiaoshan ; Yang, Min ; Cong, Wei ; Fan, Zhipeng ; Wang, Jinsong ; Zhang, Chunmei ; Du, Jie ; Wang, Songlin</creator><creatorcontrib>Wang, Fu ; Li, Yang ; Wu, Xiaoshan ; Yang, Min ; Cong, Wei ; Fan, Zhipeng ; Wang, Jinsong ; Zhang, Chunmei ; Du, Jie ; Wang, Songlin</creatorcontrib><description>In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis.
We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars.
This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-017-3546-4</identifier><identifier>PMID: 28187707</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Animals ; Annotations ; Developmental biology ; Developmental stages ; DNA microarrays ; Female ; Gene expression ; Gene Expression Profiling ; Gene mapping ; Gene Regulatory Networks ; Genomes ; Genomics ; Hedgehog Proteins - genetics ; Mammals ; Mapping ; Molar - cytology ; Molar - metabolism ; Molars ; Molecular modelling ; Morphogenesis ; Non-coding RNA ; Pregnancy ; Proteins ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; Swine ; Swine, Miniature ; Teeth ; Transcription ; Transforming Growth Factor beta - metabolism ; Wnt protein ; Wnt Signaling Pathway - genetics</subject><ispartof>BMC genomics, 2017-02, Vol.18 (1), p.148-148, Article 148</ispartof><rights>Copyright BioMed Central 2017</rights><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</citedby><cites>FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5303240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2348289720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28187707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Cong, Wei</creatorcontrib><creatorcontrib>Fan, Zhipeng</creatorcontrib><creatorcontrib>Wang, Jinsong</creatorcontrib><creatorcontrib>Zhang, Chunmei</creatorcontrib><creatorcontrib>Du, Jie</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><title>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis.
We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars.
This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research.</description><subject>Animals</subject><subject>Annotations</subject><subject>Developmental biology</subject><subject>Developmental stages</subject><subject>DNA microarrays</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene mapping</subject><subject>Gene Regulatory Networks</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hedgehog Proteins - genetics</subject><subject>Mammals</subject><subject>Mapping</subject><subject>Molar - cytology</subject><subject>Molar - metabolism</subject><subject>Molars</subject><subject>Molecular modelling</subject><subject>Morphogenesis</subject><subject>Non-coding RNA</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Swine</subject><subject>Swine, Miniature</subject><subject>Teeth</subject><subject>Transcription</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - genetics</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kk1rFTEUhoMotlZ_gBsJuHEzmu_EjVCKX1Ba0O5DJpM7NzWTjEmmcn-Jf9dM77W0LoSEHE6evJyT8wLwEqO3GCvxrmCiBOsQlh3lTHTsETjGTOKOYMEe34uPwLNSrlEDFeFPwRFRWEmJ5DH4fZVNLDb7uabJQRNN2BVfYNpAmwYfx5YaYEgtiCl2h9y3i9MCt37chrZrgXXrYHbjEkxNeQejq79S_nErYoo1g4M--upN9Smu2dnlyUQXK5xSMLm0azg1xNQlOzj7sTwHTzYmFPficJ6A758-Xp196c4vP389Oz3vLOO8dhhZQnrGpMUcScMGq5zEwlJHjVhXLzHvmXGDsL2wijnJTY8pdlRuGD0BH_aq89JPbrCtomyCnrOfTN7pZLx-eBP9Vo_pRnOKKGGoCbw5COT0c3Gl6skX60Jo3aWl6DYlyaligjT09T_odVpy---iCWWKqPeSoP9RbWSU4cbwRuE9ZXMqJbvNXckY6dUaem8N3SauV2votddX93u9e_HXC_QP19u3nA</recordid><startdate>20170210</startdate><enddate>20170210</enddate><creator>Wang, Fu</creator><creator>Li, Yang</creator><creator>Wu, Xiaoshan</creator><creator>Yang, Min</creator><creator>Cong, Wei</creator><creator>Fan, Zhipeng</creator><creator>Wang, Jinsong</creator><creator>Zhang, Chunmei</creator><creator>Du, Jie</creator><creator>Wang, Songlin</creator><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170210</creationdate><title>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</title><author>Wang, Fu ; Li, Yang ; Wu, Xiaoshan ; Yang, Min ; Cong, Wei ; Fan, Zhipeng ; Wang, Jinsong ; Zhang, Chunmei ; Du, Jie ; Wang, Songlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Annotations</topic><topic>Developmental biology</topic><topic>Developmental stages</topic><topic>DNA microarrays</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene mapping</topic><topic>Gene Regulatory Networks</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hedgehog Proteins - genetics</topic><topic>Mammals</topic><topic>Mapping</topic><topic>Molar - cytology</topic><topic>Molar - metabolism</topic><topic>Molars</topic><topic>Molecular modelling</topic><topic>Morphogenesis</topic><topic>Non-coding RNA</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Swine</topic><topic>Swine, Miniature</topic><topic>Teeth</topic><topic>Transcription</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Cong, Wei</creatorcontrib><creatorcontrib>Fan, Zhipeng</creatorcontrib><creatorcontrib>Wang, Jinsong</creatorcontrib><creatorcontrib>Zhang, Chunmei</creatorcontrib><creatorcontrib>Du, Jie</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fu</au><au>Li, Yang</au><au>Wu, Xiaoshan</au><au>Yang, Min</au><au>Cong, Wei</au><au>Fan, Zhipeng</au><au>Wang, Jinsong</au><au>Zhang, Chunmei</au><au>Du, Jie</au><au>Wang, Songlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2017-02-10</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>148</spage><epage>148</epage><pages>148-148</pages><artnum>148</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis.
We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars.
This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>28187707</pmid><doi>10.1186/s12864-017-3546-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2017-02, Vol.18 (1), p.148-148, Article 148 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5303240 |
source | PubMed Central Free; Publicly Available Content (ProQuest) |
subjects | Animals Annotations Developmental biology Developmental stages DNA microarrays Female Gene expression Gene Expression Profiling Gene mapping Gene Regulatory Networks Genomes Genomics Hedgehog Proteins - genetics Mammals Mapping Molar - cytology Molar - metabolism Molars Molecular modelling Morphogenesis Non-coding RNA Pregnancy Proteins Ribonucleic acid RNA RNA, Long Noncoding - genetics Swine Swine, Miniature Teeth Transcription Transforming Growth Factor beta - metabolism Wnt protein Wnt Signaling Pathway - genetics |
title | Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20of%20coding%20and%20long%20non-coding%20RNAs%20highlights%20the%20regulatory%20network%20of%20cascade%20initiation%20of%20permanent%20molars%20in%20miniature%20pigs&rft.jtitle=BMC%20genomics&rft.au=Wang,%20Fu&rft.date=2017-02-10&rft.volume=18&rft.issue=1&rft.spage=148&rft.epage=148&rft.pages=148-148&rft.artnum=148&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-017-3546-4&rft_dat=%3Cproquest_pubme%3E4317919121%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1873412035&rft_id=info:pmid/28187707&rfr_iscdi=true |