Loading…

Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs

In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for study...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2017-02, Vol.18 (1), p.148-148, Article 148
Main Authors: Wang, Fu, Li, Yang, Wu, Xiaoshan, Yang, Min, Cong, Wei, Fan, Zhipeng, Wang, Jinsong, Zhang, Chunmei, Du, Jie, Wang, Songlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43
cites cdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43
container_end_page 148
container_issue 1
container_start_page 148
container_title BMC genomics
container_volume 18
creator Wang, Fu
Li, Yang
Wu, Xiaoshan
Yang, Min
Cong, Wei
Fan, Zhipeng
Wang, Jinsong
Zhang, Chunmei
Du, Jie
Wang, Songlin
description In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis. We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars. This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research.
doi_str_mv 10.1186/s12864-017-3546-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5303240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4317919121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhoMotlZ_gBsJuHEzmu_EjVCKX1Ba0O5DJpM7NzWTjEmmcn-Jf9dM77W0LoSEHE6evJyT8wLwEqO3GCvxrmCiBOsQlh3lTHTsETjGTOKOYMEe34uPwLNSrlEDFeFPwRFRWEmJ5DH4fZVNLDb7uabJQRNN2BVfYNpAmwYfx5YaYEgtiCl2h9y3i9MCt37chrZrgXXrYHbjEkxNeQejq79S_nErYoo1g4M--upN9Smu2dnlyUQXK5xSMLm0azg1xNQlOzj7sTwHTzYmFPficJ6A758-Xp196c4vP389Oz3vLOO8dhhZQnrGpMUcScMGq5zEwlJHjVhXLzHvmXGDsL2wijnJTY8pdlRuGD0BH_aq89JPbrCtomyCnrOfTN7pZLx-eBP9Vo_pRnOKKGGoCbw5COT0c3Gl6skX60Jo3aWl6DYlyaligjT09T_odVpy---iCWWKqPeSoP9RbWSU4cbwRuE9ZXMqJbvNXckY6dUaem8N3SauV2votddX93u9e_HXC_QP19u3nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873412035</pqid></control><display><type>article</type><title>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Wang, Fu ; Li, Yang ; Wu, Xiaoshan ; Yang, Min ; Cong, Wei ; Fan, Zhipeng ; Wang, Jinsong ; Zhang, Chunmei ; Du, Jie ; Wang, Songlin</creator><creatorcontrib>Wang, Fu ; Li, Yang ; Wu, Xiaoshan ; Yang, Min ; Cong, Wei ; Fan, Zhipeng ; Wang, Jinsong ; Zhang, Chunmei ; Du, Jie ; Wang, Songlin</creatorcontrib><description>In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis. We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars. This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-017-3546-4</identifier><identifier>PMID: 28187707</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Animals ; Annotations ; Developmental biology ; Developmental stages ; DNA microarrays ; Female ; Gene expression ; Gene Expression Profiling ; Gene mapping ; Gene Regulatory Networks ; Genomes ; Genomics ; Hedgehog Proteins - genetics ; Mammals ; Mapping ; Molar - cytology ; Molar - metabolism ; Molars ; Molecular modelling ; Morphogenesis ; Non-coding RNA ; Pregnancy ; Proteins ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; Swine ; Swine, Miniature ; Teeth ; Transcription ; Transforming Growth Factor beta - metabolism ; Wnt protein ; Wnt Signaling Pathway - genetics</subject><ispartof>BMC genomics, 2017-02, Vol.18 (1), p.148-148, Article 148</ispartof><rights>Copyright BioMed Central 2017</rights><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</citedby><cites>FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5303240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2348289720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28187707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Cong, Wei</creatorcontrib><creatorcontrib>Fan, Zhipeng</creatorcontrib><creatorcontrib>Wang, Jinsong</creatorcontrib><creatorcontrib>Zhang, Chunmei</creatorcontrib><creatorcontrib>Du, Jie</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><title>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis. We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars. This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research.</description><subject>Animals</subject><subject>Annotations</subject><subject>Developmental biology</subject><subject>Developmental stages</subject><subject>DNA microarrays</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene mapping</subject><subject>Gene Regulatory Networks</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hedgehog Proteins - genetics</subject><subject>Mammals</subject><subject>Mapping</subject><subject>Molar - cytology</subject><subject>Molar - metabolism</subject><subject>Molars</subject><subject>Molecular modelling</subject><subject>Morphogenesis</subject><subject>Non-coding RNA</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Swine</subject><subject>Swine, Miniature</subject><subject>Teeth</subject><subject>Transcription</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - genetics</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kk1rFTEUhoMotlZ_gBsJuHEzmu_EjVCKX1Ba0O5DJpM7NzWTjEmmcn-Jf9dM77W0LoSEHE6evJyT8wLwEqO3GCvxrmCiBOsQlh3lTHTsETjGTOKOYMEe34uPwLNSrlEDFeFPwRFRWEmJ5DH4fZVNLDb7uabJQRNN2BVfYNpAmwYfx5YaYEgtiCl2h9y3i9MCt37chrZrgXXrYHbjEkxNeQejq79S_nErYoo1g4M--upN9Smu2dnlyUQXK5xSMLm0azg1xNQlOzj7sTwHTzYmFPficJ6A758-Xp196c4vP389Oz3vLOO8dhhZQnrGpMUcScMGq5zEwlJHjVhXLzHvmXGDsL2wijnJTY8pdlRuGD0BH_aq89JPbrCtomyCnrOfTN7pZLx-eBP9Vo_pRnOKKGGoCbw5COT0c3Gl6skX60Jo3aWl6DYlyaligjT09T_odVpy---iCWWKqPeSoP9RbWSU4cbwRuE9ZXMqJbvNXckY6dUaem8N3SauV2votddX93u9e_HXC_QP19u3nA</recordid><startdate>20170210</startdate><enddate>20170210</enddate><creator>Wang, Fu</creator><creator>Li, Yang</creator><creator>Wu, Xiaoshan</creator><creator>Yang, Min</creator><creator>Cong, Wei</creator><creator>Fan, Zhipeng</creator><creator>Wang, Jinsong</creator><creator>Zhang, Chunmei</creator><creator>Du, Jie</creator><creator>Wang, Songlin</creator><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170210</creationdate><title>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</title><author>Wang, Fu ; Li, Yang ; Wu, Xiaoshan ; Yang, Min ; Cong, Wei ; Fan, Zhipeng ; Wang, Jinsong ; Zhang, Chunmei ; Du, Jie ; Wang, Songlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Annotations</topic><topic>Developmental biology</topic><topic>Developmental stages</topic><topic>DNA microarrays</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene mapping</topic><topic>Gene Regulatory Networks</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hedgehog Proteins - genetics</topic><topic>Mammals</topic><topic>Mapping</topic><topic>Molar - cytology</topic><topic>Molar - metabolism</topic><topic>Molars</topic><topic>Molecular modelling</topic><topic>Morphogenesis</topic><topic>Non-coding RNA</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Swine</topic><topic>Swine, Miniature</topic><topic>Teeth</topic><topic>Transcription</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Wu, Xiaoshan</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Cong, Wei</creatorcontrib><creatorcontrib>Fan, Zhipeng</creatorcontrib><creatorcontrib>Wang, Jinsong</creatorcontrib><creatorcontrib>Zhang, Chunmei</creatorcontrib><creatorcontrib>Du, Jie</creatorcontrib><creatorcontrib>Wang, Songlin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fu</au><au>Li, Yang</au><au>Wu, Xiaoshan</au><au>Yang, Min</au><au>Cong, Wei</au><au>Fan, Zhipeng</au><au>Wang, Jinsong</au><au>Zhang, Chunmei</au><au>Du, Jie</au><au>Wang, Songlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2017-02-10</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>148</spage><epage>148</epage><pages>148-148</pages><artnum>148</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>In diphyodont mammals, the additional molars (permanent molars) bud off from the posterior-free end of the primary dental lamina compared with successional teeth (replacement teeth) budding off from the secondary dental lamina. The diphyodont miniature pig has proved to be a valuable model for studying human molar morphogenesis. The additional molars show a sequential initiation pattern related to the specific tooth development stage of additional molars in miniature pigs during the morphogenesis of additional molars. However, the molecular mechanisms of the regulatory network of mRNAs and long non-coding RNAs during sequential formation of additional molars remain poorly characterized in diphyodont mammals. Here, we performed RNA-seq and microarray on miniature pigs at three key molar developmental stages to examine their differential gene expression profiles and potential regulatory networks during additional molar morphogenesis. We have profiled the differential transcript expression and functional networks during morphogenesis of additional molars in miniature pigs. We also have identified the coding and long non-coding transcripts using Coding-Non-Coding Index (CNCI) and annotated transcripts through mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. Many new unannotated genes plus 450 putative long intergenic non-coding RNAs (lincRNAs) were identified. Detailed regulatory network analyses reveal that WNT and TGF-β pathways are critical in regulating sequential morphogenesis of additional molars. This is the first study to comprehensively analyze the spatiotemporal dynamics of coding and long non-coding transcripts during morphogenesis of additional molars in diphyodont mammals. The miniature pig serves as a large model animal to elucidate the relationship between morphogenesis and transcript level during the cascade initiation of additional molars. Our data provide fundamental knowledge and a basis for understanding the molecular mechanisms governing cascade initiation of additional molars, but also provide an important resource for developmental biology research.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>28187707</pmid><doi>10.1186/s12864-017-3546-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2017-02, Vol.18 (1), p.148-148, Article 148
issn 1471-2164
1471-2164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5303240
source PubMed Central Free; Publicly Available Content (ProQuest)
subjects Animals
Annotations
Developmental biology
Developmental stages
DNA microarrays
Female
Gene expression
Gene Expression Profiling
Gene mapping
Gene Regulatory Networks
Genomes
Genomics
Hedgehog Proteins - genetics
Mammals
Mapping
Molar - cytology
Molar - metabolism
Molars
Molecular modelling
Morphogenesis
Non-coding RNA
Pregnancy
Proteins
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
Swine
Swine, Miniature
Teeth
Transcription
Transforming Growth Factor beta - metabolism
Wnt protein
Wnt Signaling Pathway - genetics
title Transcriptome analysis of coding and long non-coding RNAs highlights the regulatory network of cascade initiation of permanent molars in miniature pigs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20of%20coding%20and%20long%20non-coding%20RNAs%20highlights%20the%20regulatory%20network%20of%20cascade%20initiation%20of%20permanent%20molars%20in%20miniature%20pigs&rft.jtitle=BMC%20genomics&rft.au=Wang,%20Fu&rft.date=2017-02-10&rft.volume=18&rft.issue=1&rft.spage=148&rft.epage=148&rft.pages=148-148&rft.artnum=148&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-017-3546-4&rft_dat=%3Cproquest_pubme%3E4317919121%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-10c22b447c1507a4dc8e716c3e3a63a63b715b4aed6cb6c84e75ab131e37f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1873412035&rft_id=info:pmid/28187707&rfr_iscdi=true