Loading…

Whole-eye transplantation: a look into the past and vision for the future

Blindness afflicts ~39 million people worldwide. Retinal ganglion cells are unable to regenerate, making this condition irreversible in many cases. Whole-eye transplantation (WET) provides the opportunity to replace diseased retinal ganglion cells, as well as the entire optical system and surroundin...

Full description

Saved in:
Bibliographic Details
Published in:Eye (London) 2017-02, Vol.31 (2), p.179-184
Main Authors: Bourne, D, Li, Y, Komatsu, C, Miller, M R, Davidson, E H, He, L, Rosner, I A, Tang, H, Chen, W, Solari, M G, Schuman, J S, Washington, K M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Blindness afflicts ~39 million people worldwide. Retinal ganglion cells are unable to regenerate, making this condition irreversible in many cases. Whole-eye transplantation (WET) provides the opportunity to replace diseased retinal ganglion cells, as well as the entire optical system and surrounding facial tissue, if necessary. Recent success in face transplantation demonstrates that this may be a promising treatment for what has been to this time an incurable condition. An animal model for WET must be established to further enhance our knowledge of nerve regeneration, immunosuppression, and technical aspects of surgery. A systematic review of the literature was performed to evaluate studies describing animal models for WET. Only articles in which the eye was completely enucleated and reimplanted were included. Study methods and results were compared. In the majority of published literature, WET can result in recovery of vision in cold-blooded vertebrates. There are a few instances in which mammalian WET models demonstrate survival of the transplanted tissue following neurovascular anastomosis and the ability to maintain brief electroretinogram activity in the new host. In this study we review in cold-blooded vertebrates and mammalian animal models for WET and discuss prospects for future research for translation to human eye transplantation.
ISSN:0950-222X
1476-5454
DOI:10.1038/eye.2016.272