Loading…

Pneumococcal galactose catabolism is controlled by multiple regulators acting on pyruvate formate lyase

Catabolism of galactose by Streptococcus pneumoniae alters the microbe’s metabolism from homolactic to mixed acid fermentation, and this shift is linked to the microbe’s virulence. However, the genetic basis of this switch is unknown. Pyruvate formate lyase (PFL) is a crucial enzyme for mixed acid f...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-02, Vol.7 (1), p.43587-43587, Article 43587
Main Authors: Al-Bayati, Firas A. Y., Kahya, Hasan F. H., Damianou, Andreas, Shafeeq, Sulman, Kuipers, Oscar P., Andrew, Peter W., Yesilkaya, Hasan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Catabolism of galactose by Streptococcus pneumoniae alters the microbe’s metabolism from homolactic to mixed acid fermentation, and this shift is linked to the microbe’s virulence. However, the genetic basis of this switch is unknown. Pyruvate formate lyase (PFL) is a crucial enzyme for mixed acid fermentation. Functional PFL requires the activities of two enzymes: pyruvate formate lyase activating enzyme (coded by pflA ) and pyruvate formate lyase (coded by pflB ). To understand the genetic basis of mixed acid fermentation, transcriptional regulation of pflA and pflB was studied. By microarray analysis of Δ pflB , differential regulation of several transcriptional regulators were identified, and CcpA, and GlnR’s role in active PFL synthesis was studied in detail as these regulators directly interact with the putative promoters of both pflA and pflB , their mutation attenuated pneumococcal growth, and their expression was induced on host-derived sugars, indicating that these regulators have a role in sugar metabolism, and multiple regulators are involved in active PFL synthesis. We also found that the influence of each regulator on pflA and pflB expression was distinct in terms of activation and repression, and environmental condition. These results show that active PFL synthesis is finely tuned, and feed-back inhibition and activation are involved.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep43587