Loading…
Automated detection of dilated capillaries on optical coherence tomography angiography
Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with s...
Saved in:
Published in: | Biomedical optics express 2017-02, Vol.8 (2), p.1101-1109 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03 |
container_end_page | 1109 |
container_issue | 2 |
container_start_page | 1101 |
container_title | Biomedical optics express |
container_volume | 8 |
creator | Dongye, Changlei Zhang, Miao Hwang, Thomas S Wang, Jie Gao, Simon S Liu, Liang Huang, David Wilson, David J Jia, Yali |
description | Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading. |
doi_str_mv | 10.1364/BOE.8.001101 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5330594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1875403304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</originalsourceid><addsrcrecordid>eNpVkU1vwjAMhqNp00CM285TjzsMljQJTS-TGGIfEhIXtGvkpi5kKk2XtJP49yuDIeZLLPvx6yQvIbeMjhmfiMfn5XysxpQyRtkF6cdMTkYJVfLyLO-RYQiftAshEsrVNenFKk4YpbJPPqZt47bQYB7l2KBprKsiV0S5LX-LBmpbluAthmjfqRtroIyM26DHymDUTbu1h3qzi6Ba22N-Q64KKAMOj-eArF7mq9nbaLF8fZ9NFyPDlWhGhmVxkQLESvCcZxIgzeKJ5JgmKkGEOE24ZIKhKGihGIhMZQqEoFlRMEP5gDwdZOs222JusGo8lLr2dgt-px1Y_b9T2Y1eu28tOacyFZ3A_VHAu68WQ6O3NhjsXlyha4NmKpGCdvAefTigxrsQPBanNYzqvRm6M0MrfTCjw-_Or3aC_76e_wAAKYbR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875403304</pqid></control><display><type>article</type><title>Automated detection of dilated capillaries on optical coherence tomography angiography</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Dongye, Changlei ; Zhang, Miao ; Hwang, Thomas S ; Wang, Jie ; Gao, Simon S ; Liu, Liang ; Huang, David ; Wilson, David J ; Jia, Yali</creator><creatorcontrib>Dongye, Changlei ; Zhang, Miao ; Hwang, Thomas S ; Wang, Jie ; Gao, Simon S ; Liu, Liang ; Huang, David ; Wilson, David J ; Jia, Yali</creatorcontrib><description>Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.8.001101</identifier><identifier>PMID: 28271005</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2017-02, Vol.8 (2), p.1101-1109</ispartof><rights>2017 Optical Society of America 2017 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</citedby><cites>FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330594/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330594/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28271005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dongye, Changlei</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Hwang, Thomas S</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Simon S</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Huang, David</creatorcontrib><creatorcontrib>Wilson, David J</creatorcontrib><creatorcontrib>Jia, Yali</creatorcontrib><title>Automated detection of dilated capillaries on optical coherence tomography angiography</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkU1vwjAMhqNp00CM285TjzsMljQJTS-TGGIfEhIXtGvkpi5kKk2XtJP49yuDIeZLLPvx6yQvIbeMjhmfiMfn5XysxpQyRtkF6cdMTkYJVfLyLO-RYQiftAshEsrVNenFKk4YpbJPPqZt47bQYB7l2KBprKsiV0S5LX-LBmpbluAthmjfqRtroIyM26DHymDUTbu1h3qzi6Ba22N-Q64KKAMOj-eArF7mq9nbaLF8fZ9NFyPDlWhGhmVxkQLESvCcZxIgzeKJ5JgmKkGEOE24ZIKhKGihGIhMZQqEoFlRMEP5gDwdZOs222JusGo8lLr2dgt-px1Y_b9T2Y1eu28tOacyFZ3A_VHAu68WQ6O3NhjsXlyha4NmKpGCdvAefTigxrsQPBanNYzqvRm6M0MrfTCjw-_Or3aC_76e_wAAKYbR</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Dongye, Changlei</creator><creator>Zhang, Miao</creator><creator>Hwang, Thomas S</creator><creator>Wang, Jie</creator><creator>Gao, Simon S</creator><creator>Liu, Liang</creator><creator>Huang, David</creator><creator>Wilson, David J</creator><creator>Jia, Yali</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170201</creationdate><title>Automated detection of dilated capillaries on optical coherence tomography angiography</title><author>Dongye, Changlei ; Zhang, Miao ; Hwang, Thomas S ; Wang, Jie ; Gao, Simon S ; Liu, Liang ; Huang, David ; Wilson, David J ; Jia, Yali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongye, Changlei</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Hwang, Thomas S</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Simon S</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Huang, David</creatorcontrib><creatorcontrib>Wilson, David J</creatorcontrib><creatorcontrib>Jia, Yali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongye, Changlei</au><au>Zhang, Miao</au><au>Hwang, Thomas S</au><au>Wang, Jie</au><au>Gao, Simon S</au><au>Liu, Liang</au><au>Huang, David</au><au>Wilson, David J</au><au>Jia, Yali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of dilated capillaries on optical coherence tomography angiography</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>1101</spage><epage>1109</epage><pages>1101-1109</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>28271005</pmid><doi>10.1364/BOE.8.001101</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2017-02, Vol.8 (2), p.1101-1109 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5330594 |
source | PubMed Central; EZB Electronic Journals Library |
title | Automated detection of dilated capillaries on optical coherence tomography angiography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20dilated%20capillaries%20on%20optical%20coherence%20tomography%20angiography&rft.jtitle=Biomedical%20optics%20express&rft.au=Dongye,%20Changlei&rft.date=2017-02-01&rft.volume=8&rft.issue=2&rft.spage=1101&rft.epage=1109&rft.pages=1101-1109&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.8.001101&rft_dat=%3Cproquest_pubme%3E1875403304%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1875403304&rft_id=info:pmid/28271005&rfr_iscdi=true |