Loading…

Automated detection of dilated capillaries on optical coherence tomography angiography

Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with s...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical optics express 2017-02, Vol.8 (2), p.1101-1109
Main Authors: Dongye, Changlei, Zhang, Miao, Hwang, Thomas S, Wang, Jie, Gao, Simon S, Liu, Liang, Huang, David, Wilson, David J, Jia, Yali
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03
cites cdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03
container_end_page 1109
container_issue 2
container_start_page 1101
container_title Biomedical optics express
container_volume 8
creator Dongye, Changlei
Zhang, Miao
Hwang, Thomas S
Wang, Jie
Gao, Simon S
Liu, Liang
Huang, David
Wilson, David J
Jia, Yali
description Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading.
doi_str_mv 10.1364/BOE.8.001101
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5330594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1875403304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</originalsourceid><addsrcrecordid>eNpVkU1vwjAMhqNp00CM285TjzsMljQJTS-TGGIfEhIXtGvkpi5kKk2XtJP49yuDIeZLLPvx6yQvIbeMjhmfiMfn5XysxpQyRtkF6cdMTkYJVfLyLO-RYQiftAshEsrVNenFKk4YpbJPPqZt47bQYB7l2KBprKsiV0S5LX-LBmpbluAthmjfqRtroIyM26DHymDUTbu1h3qzi6Ba22N-Q64KKAMOj-eArF7mq9nbaLF8fZ9NFyPDlWhGhmVxkQLESvCcZxIgzeKJ5JgmKkGEOE24ZIKhKGihGIhMZQqEoFlRMEP5gDwdZOs222JusGo8lLr2dgt-px1Y_b9T2Y1eu28tOacyFZ3A_VHAu68WQ6O3NhjsXlyha4NmKpGCdvAefTigxrsQPBanNYzqvRm6M0MrfTCjw-_Or3aC_76e_wAAKYbR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875403304</pqid></control><display><type>article</type><title>Automated detection of dilated capillaries on optical coherence tomography angiography</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Dongye, Changlei ; Zhang, Miao ; Hwang, Thomas S ; Wang, Jie ; Gao, Simon S ; Liu, Liang ; Huang, David ; Wilson, David J ; Jia, Yali</creator><creatorcontrib>Dongye, Changlei ; Zhang, Miao ; Hwang, Thomas S ; Wang, Jie ; Gao, Simon S ; Liu, Liang ; Huang, David ; Wilson, David J ; Jia, Yali</creatorcontrib><description>Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.8.001101</identifier><identifier>PMID: 28271005</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2017-02, Vol.8 (2), p.1101-1109</ispartof><rights>2017 Optical Society of America 2017 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</citedby><cites>FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330594/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330594/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28271005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dongye, Changlei</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Hwang, Thomas S</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Simon S</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Huang, David</creatorcontrib><creatorcontrib>Wilson, David J</creatorcontrib><creatorcontrib>Jia, Yali</creatorcontrib><title>Automated detection of dilated capillaries on optical coherence tomography angiography</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkU1vwjAMhqNp00CM285TjzsMljQJTS-TGGIfEhIXtGvkpi5kKk2XtJP49yuDIeZLLPvx6yQvIbeMjhmfiMfn5XysxpQyRtkF6cdMTkYJVfLyLO-RYQiftAshEsrVNenFKk4YpbJPPqZt47bQYB7l2KBprKsiV0S5LX-LBmpbluAthmjfqRtroIyM26DHymDUTbu1h3qzi6Ba22N-Q64KKAMOj-eArF7mq9nbaLF8fZ9NFyPDlWhGhmVxkQLESvCcZxIgzeKJ5JgmKkGEOE24ZIKhKGihGIhMZQqEoFlRMEP5gDwdZOs222JusGo8lLr2dgt-px1Y_b9T2Y1eu28tOacyFZ3A_VHAu68WQ6O3NhjsXlyha4NmKpGCdvAefTigxrsQPBanNYzqvRm6M0MrfTCjw-_Or3aC_76e_wAAKYbR</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Dongye, Changlei</creator><creator>Zhang, Miao</creator><creator>Hwang, Thomas S</creator><creator>Wang, Jie</creator><creator>Gao, Simon S</creator><creator>Liu, Liang</creator><creator>Huang, David</creator><creator>Wilson, David J</creator><creator>Jia, Yali</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170201</creationdate><title>Automated detection of dilated capillaries on optical coherence tomography angiography</title><author>Dongye, Changlei ; Zhang, Miao ; Hwang, Thomas S ; Wang, Jie ; Gao, Simon S ; Liu, Liang ; Huang, David ; Wilson, David J ; Jia, Yali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongye, Changlei</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Hwang, Thomas S</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Gao, Simon S</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Huang, David</creatorcontrib><creatorcontrib>Wilson, David J</creatorcontrib><creatorcontrib>Jia, Yali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongye, Changlei</au><au>Zhang, Miao</au><au>Hwang, Thomas S</au><au>Wang, Jie</au><au>Gao, Simon S</au><au>Liu, Liang</au><au>Huang, David</au><au>Wilson, David J</au><au>Jia, Yali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of dilated capillaries on optical coherence tomography angiography</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>1101</spage><epage>1109</epage><pages>1101-1109</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>28271005</pmid><doi>10.1364/BOE.8.001101</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2017-02, Vol.8 (2), p.1101-1109
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5330594
source PubMed Central; EZB Electronic Journals Library
title Automated detection of dilated capillaries on optical coherence tomography angiography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20dilated%20capillaries%20on%20optical%20coherence%20tomography%20angiography&rft.jtitle=Biomedical%20optics%20express&rft.au=Dongye,%20Changlei&rft.date=2017-02-01&rft.volume=8&rft.issue=2&rft.spage=1101&rft.epage=1109&rft.pages=1101-1109&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.8.001101&rft_dat=%3Cproquest_pubme%3E1875403304%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c1b2f9aa2843d3b5aa9b2653e9787eea29735141e4f0f81a4b8b8a440bff1c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1875403304&rft_id=info:pmid/28271005&rfr_iscdi=true