Loading…
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a...
Saved in:
Published in: | Scientific reports 2017-03, Vol.7 (1), p.43768-43768, Article 43768 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-65eb1478287be042c86ad9f51592cae494d8469a835c31f8a087c2f5ad4bbc63 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-65eb1478287be042c86ad9f51592cae494d8469a835c31f8a087c2f5ad4bbc63 |
container_end_page | 43768 |
container_issue | 1 |
container_start_page | 43768 |
container_title | Scientific reports |
container_volume | 7 |
creator | Lamata, Lucas |
description | We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. |
doi_str_mv | 10.1038/srep43768 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903362406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-65eb1478287be042c86ad9f51592cae494d8469a835c31f8a087c2f5ad4bbc63</originalsourceid><addsrcrecordid>eNplkV1rFTEQhoMotrS98A9IwBsrbM3mYze5EaT1Cwre9M6LkM3OblN3k9N8WPTXm8Oph6POzQzMwzsv8yL0oiUXLWHybYqw4azv5BN0TAkXDWWUPj2Yj9BZSneklqCKt-o5OqKSik4IdYy-XbnZZbM0xpslzPi-GJ_LipNby2KyCx6HCc_gIZrF_YIRXzn7HfAaRlgSfnD5FqeygWiDH4vNzs_YumiLy-kUPZvMkuDssZ-gm48fbi4_N9dfP325fH_dWM5kbjoBQ8t7SWU_AOHUys6MahKtUNQa4IqPknfKSCYsaydpiOwtnYQZ-TDYjp2gdzvZTRlWGC34XL3qTXSriT91ME7_vfHuVs_hhxaMiY6oKvD6USCG-wIp69UlC8tiPISSdCt7zjnj_fbWq3_Qu1BifV2lFGGso5xsqfMdZWNINZ9pb6Ylehua3odW2ZeH7vfkn4gq8GYHpLryM8SDk_-p_QZKAaKh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903362406</pqid></control><display><type>article</type><title>Digital-analog quantum simulation of generalized Dicke models with superconducting circuits</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lamata, Lucas</creator><creatorcontrib>Lamata, Lucas</creatorcontrib><description>We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep43768</identifier><identifier>PMID: 28256559</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/3926 ; Circuits ; Humanities and Social Sciences ; multidisciplinary ; Quantum theory ; Science ; Transmission lines</subject><ispartof>Scientific reports, 2017-03, Vol.7 (1), p.43768-43768, Article 43768</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-65eb1478287be042c86ad9f51592cae494d8469a835c31f8a087c2f5ad4bbc63</citedby><cites>FETCH-LOGICAL-c438t-65eb1478287be042c86ad9f51592cae494d8469a835c31f8a087c2f5ad4bbc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1903362406/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1903362406?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28256559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamata, Lucas</creatorcontrib><title>Digital-analog quantum simulation of generalized Dicke models with superconducting circuits</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.</description><subject>639/766/483/2802</subject><subject>639/766/483/3926</subject><subject>Circuits</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Transmission lines</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1rFTEQhoMotrS98A9IwBsrbM3mYze5EaT1Cwre9M6LkM3OblN3k9N8WPTXm8Oph6POzQzMwzsv8yL0oiUXLWHybYqw4azv5BN0TAkXDWWUPj2Yj9BZSneklqCKt-o5OqKSik4IdYy-XbnZZbM0xpslzPi-GJ_LipNby2KyCx6HCc_gIZrF_YIRXzn7HfAaRlgSfnD5FqeygWiDH4vNzs_YumiLy-kUPZvMkuDssZ-gm48fbi4_N9dfP325fH_dWM5kbjoBQ8t7SWU_AOHUys6MahKtUNQa4IqPknfKSCYsaydpiOwtnYQZ-TDYjp2gdzvZTRlWGC34XL3qTXSriT91ME7_vfHuVs_hhxaMiY6oKvD6USCG-wIp69UlC8tiPISSdCt7zjnj_fbWq3_Qu1BifV2lFGGso5xsqfMdZWNINZ9pb6Ylehua3odW2ZeH7vfkn4gq8GYHpLryM8SDk_-p_QZKAaKh</recordid><startdate>20170303</startdate><enddate>20170303</enddate><creator>Lamata, Lucas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170303</creationdate><title>Digital-analog quantum simulation of generalized Dicke models with superconducting circuits</title><author>Lamata, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-65eb1478287be042c86ad9f51592cae494d8469a835c31f8a087c2f5ad4bbc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/3926</topic><topic>Circuits</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamata, Lucas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamata, Lucas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital-analog quantum simulation of generalized Dicke models with superconducting circuits</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-03-03</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>43768</spage><epage>43768</epage><pages>43768-43768</pages><artnum>43768</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28256559</pmid><doi>10.1038/srep43768</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-03, Vol.7 (1), p.43768-43768, Article 43768 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335609 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/483/2802 639/766/483/3926 Circuits Humanities and Social Sciences multidisciplinary Quantum theory Science Transmission lines |
title | Digital-analog quantum simulation of generalized Dicke models with superconducting circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital-analog%20quantum%20simulation%20of%20generalized%20Dicke%20models%20with%20superconducting%20circuits&rft.jtitle=Scientific%20reports&rft.au=Lamata,%20Lucas&rft.date=2017-03-03&rft.volume=7&rft.issue=1&rft.spage=43768&rft.epage=43768&rft.pages=43768-43768&rft.artnum=43768&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep43768&rft_dat=%3Cproquest_pubme%3E1903362406%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-65eb1478287be042c86ad9f51592cae494d8469a835c31f8a087c2f5ad4bbc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1903362406&rft_id=info:pmid/28256559&rfr_iscdi=true |