Loading…
Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms
Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis o...
Saved in:
Published in: | Blood 2017-02, Vol.129 (6), p.680-692 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03 |
container_end_page | 692 |
container_issue | 6 |
container_start_page | 680 |
container_title | Blood |
container_volume | 129 |
creator | Rumi, Elisa Cazzola, Mario |
description | Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone. |
doi_str_mv | 10.1182/blood-2016-10-695957 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120337083</els_id><sourcerecordid>1853746125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</originalsourceid><addsrcrecordid>eNp9UcFu1TAQtBCIPgp_gJCPHBpY23FiX5BQgRapEhc4W46zKQYnDt68J_Xvm_SVAhcky5Z2Z2Z3PIy9FPBGCCPfdinnvpIgmkpA1VhtdfuI7YSWpgKQ8JjtAKCpatuKE_aM6AeAqJXUT9mJNLCdZsf8h-ivp0yRzniJ9JPTUvwShxjWO09n3E89L0hzngg5Hnza3zV4nHhInmgFJj7eYMpzySkOuNEPyCfM89of6Tl7MvhE-OL-PWXfPn38en5ZXX25-Hz-_qoKWtql0tZY04HpWm-UHpTWGNB2QxCDhFq3GKz1g7dgpJa9bkxfeyuUqsVWC6BO2buj7rzvRuwDTquT5OYSR19uXPbR_duZ4nd3nQ9OK6UN6FXg9b1Ayb_2SIsbIwVMya9e9uSE0aqtGyE3aH2EhpKJCg4PYwS4LR13l47b0tlKx3RW2qu_V3wg_Y7jjwdcP-oQsTgKEaeAfSwYFtfn-P8Jt0X1pC0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853746125</pqid></control><display><type>article</type><title>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</title><source>ScienceDirect Journals</source><creator>Rumi, Elisa ; Cazzola, Mario</creator><creatorcontrib>Rumi, Elisa ; Cazzola, Mario</creatorcontrib><description>Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2016-10-695957</identifier><identifier>PMID: 28028026</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Bone Marrow - metabolism ; Bone Marrow - pathology ; Calreticulin - genetics ; Calreticulin - metabolism ; Disease Progression ; Gene Expression Regulation, Neoplastic ; Granulocytes - metabolism ; Granulocytes - pathology ; Humans ; Janus Kinase 2 - genetics ; Janus Kinase 2 - metabolism ; Megakaryocytes - metabolism ; Megakaryocytes - pathology ; Mutation ; Myeloproliferative Neoplasms ; Polycythemia Vera - diagnosis ; Polycythemia Vera - genetics ; Polycythemia Vera - mortality ; Polycythemia Vera - pathology ; Primary Myelofibrosis - diagnosis ; Primary Myelofibrosis - genetics ; Primary Myelofibrosis - mortality ; Primary Myelofibrosis - pathology ; Receptors, Thrombopoietin - genetics ; Receptors, Thrombopoietin - metabolism ; Review Series ; Risk Assessment ; Survival Analysis ; Thrombocythemia, Essential - diagnosis ; Thrombocythemia, Essential - genetics ; Thrombocythemia, Essential - mortality ; Thrombocythemia, Essential - pathology</subject><ispartof>Blood, 2017-02, Vol.129 (6), p.680-692</ispartof><rights>2017 American Society of Hematology</rights><rights>2017 by The American Society of Hematology.</rights><rights>2017 by The American Society of Hematology 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</citedby><cites>FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</cites><orcidid>0000-0002-7572-9504 ; 0000-0001-6984-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120337083$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28028026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rumi, Elisa</creatorcontrib><creatorcontrib>Cazzola, Mario</creatorcontrib><title>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</title><title>Blood</title><addtitle>Blood</addtitle><description>Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.</description><subject>Age Factors</subject><subject>Bone Marrow - metabolism</subject><subject>Bone Marrow - pathology</subject><subject>Calreticulin - genetics</subject><subject>Calreticulin - metabolism</subject><subject>Disease Progression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Granulocytes - metabolism</subject><subject>Granulocytes - pathology</subject><subject>Humans</subject><subject>Janus Kinase 2 - genetics</subject><subject>Janus Kinase 2 - metabolism</subject><subject>Megakaryocytes - metabolism</subject><subject>Megakaryocytes - pathology</subject><subject>Mutation</subject><subject>Myeloproliferative Neoplasms</subject><subject>Polycythemia Vera - diagnosis</subject><subject>Polycythemia Vera - genetics</subject><subject>Polycythemia Vera - mortality</subject><subject>Polycythemia Vera - pathology</subject><subject>Primary Myelofibrosis - diagnosis</subject><subject>Primary Myelofibrosis - genetics</subject><subject>Primary Myelofibrosis - mortality</subject><subject>Primary Myelofibrosis - pathology</subject><subject>Receptors, Thrombopoietin - genetics</subject><subject>Receptors, Thrombopoietin - metabolism</subject><subject>Review Series</subject><subject>Risk Assessment</subject><subject>Survival Analysis</subject><subject>Thrombocythemia, Essential - diagnosis</subject><subject>Thrombocythemia, Essential - genetics</subject><subject>Thrombocythemia, Essential - mortality</subject><subject>Thrombocythemia, Essential - pathology</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1TAQtBCIPgp_gJCPHBpY23FiX5BQgRapEhc4W46zKQYnDt68J_Xvm_SVAhcky5Z2Z2Z3PIy9FPBGCCPfdinnvpIgmkpA1VhtdfuI7YSWpgKQ8JjtAKCpatuKE_aM6AeAqJXUT9mJNLCdZsf8h-ivp0yRzniJ9JPTUvwShxjWO09n3E89L0hzngg5Hnza3zV4nHhInmgFJj7eYMpzySkOuNEPyCfM89of6Tl7MvhE-OL-PWXfPn38en5ZXX25-Hz-_qoKWtql0tZY04HpWm-UHpTWGNB2QxCDhFq3GKz1g7dgpJa9bkxfeyuUqsVWC6BO2buj7rzvRuwDTquT5OYSR19uXPbR_duZ4nd3nQ9OK6UN6FXg9b1Ayb_2SIsbIwVMya9e9uSE0aqtGyE3aH2EhpKJCg4PYwS4LR13l47b0tlKx3RW2qu_V3wg_Y7jjwdcP-oQsTgKEaeAfSwYFtfn-P8Jt0X1pC0</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Rumi, Elisa</creator><creator>Cazzola, Mario</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7572-9504</orcidid><orcidid>https://orcid.org/0000-0001-6984-8817</orcidid></search><sort><creationdate>20170209</creationdate><title>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</title><author>Rumi, Elisa ; Cazzola, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age Factors</topic><topic>Bone Marrow - metabolism</topic><topic>Bone Marrow - pathology</topic><topic>Calreticulin - genetics</topic><topic>Calreticulin - metabolism</topic><topic>Disease Progression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Granulocytes - metabolism</topic><topic>Granulocytes - pathology</topic><topic>Humans</topic><topic>Janus Kinase 2 - genetics</topic><topic>Janus Kinase 2 - metabolism</topic><topic>Megakaryocytes - metabolism</topic><topic>Megakaryocytes - pathology</topic><topic>Mutation</topic><topic>Myeloproliferative Neoplasms</topic><topic>Polycythemia Vera - diagnosis</topic><topic>Polycythemia Vera - genetics</topic><topic>Polycythemia Vera - mortality</topic><topic>Polycythemia Vera - pathology</topic><topic>Primary Myelofibrosis - diagnosis</topic><topic>Primary Myelofibrosis - genetics</topic><topic>Primary Myelofibrosis - mortality</topic><topic>Primary Myelofibrosis - pathology</topic><topic>Receptors, Thrombopoietin - genetics</topic><topic>Receptors, Thrombopoietin - metabolism</topic><topic>Review Series</topic><topic>Risk Assessment</topic><topic>Survival Analysis</topic><topic>Thrombocythemia, Essential - diagnosis</topic><topic>Thrombocythemia, Essential - genetics</topic><topic>Thrombocythemia, Essential - mortality</topic><topic>Thrombocythemia, Essential - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumi, Elisa</creatorcontrib><creatorcontrib>Cazzola, Mario</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumi, Elisa</au><au>Cazzola, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2017-02-09</date><risdate>2017</risdate><volume>129</volume><issue>6</issue><spage>680</spage><epage>692</epage><pages>680-692</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28028026</pmid><doi>10.1182/blood-2016-10-695957</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7572-9504</orcidid><orcidid>https://orcid.org/0000-0001-6984-8817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2017-02, Vol.129 (6), p.680-692 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335805 |
source | ScienceDirect Journals |
subjects | Age Factors Bone Marrow - metabolism Bone Marrow - pathology Calreticulin - genetics Calreticulin - metabolism Disease Progression Gene Expression Regulation, Neoplastic Granulocytes - metabolism Granulocytes - pathology Humans Janus Kinase 2 - genetics Janus Kinase 2 - metabolism Megakaryocytes - metabolism Megakaryocytes - pathology Mutation Myeloproliferative Neoplasms Polycythemia Vera - diagnosis Polycythemia Vera - genetics Polycythemia Vera - mortality Polycythemia Vera - pathology Primary Myelofibrosis - diagnosis Primary Myelofibrosis - genetics Primary Myelofibrosis - mortality Primary Myelofibrosis - pathology Receptors, Thrombopoietin - genetics Receptors, Thrombopoietin - metabolism Review Series Risk Assessment Survival Analysis Thrombocythemia, Essential - diagnosis Thrombocythemia, Essential - genetics Thrombocythemia, Essential - mortality Thrombocythemia, Essential - pathology |
title | Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis,%20risk%20stratification,%20and%20response%20evaluation%20in%20classical%20myeloproliferative%20neoplasms&rft.jtitle=Blood&rft.au=Rumi,%20Elisa&rft.date=2017-02-09&rft.volume=129&rft.issue=6&rft.spage=680&rft.epage=692&rft.pages=680-692&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2016-10-695957&rft_dat=%3Cproquest_pubme%3E1853746125%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1853746125&rft_id=info:pmid/28028026&rfr_iscdi=true |