Loading…

Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms

Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis o...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2017-02, Vol.129 (6), p.680-692
Main Authors: Rumi, Elisa, Cazzola, Mario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03
cites cdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03
container_end_page 692
container_issue 6
container_start_page 680
container_title Blood
container_volume 129
creator Rumi, Elisa
Cazzola, Mario
description Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.
doi_str_mv 10.1182/blood-2016-10-695957
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120337083</els_id><sourcerecordid>1853746125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</originalsourceid><addsrcrecordid>eNp9UcFu1TAQtBCIPgp_gJCPHBpY23FiX5BQgRapEhc4W46zKQYnDt68J_Xvm_SVAhcky5Z2Z2Z3PIy9FPBGCCPfdinnvpIgmkpA1VhtdfuI7YSWpgKQ8JjtAKCpatuKE_aM6AeAqJXUT9mJNLCdZsf8h-ivp0yRzniJ9JPTUvwShxjWO09n3E89L0hzngg5Hnza3zV4nHhInmgFJj7eYMpzySkOuNEPyCfM89of6Tl7MvhE-OL-PWXfPn38en5ZXX25-Hz-_qoKWtql0tZY04HpWm-UHpTWGNB2QxCDhFq3GKz1g7dgpJa9bkxfeyuUqsVWC6BO2buj7rzvRuwDTquT5OYSR19uXPbR_duZ4nd3nQ9OK6UN6FXg9b1Ayb_2SIsbIwVMya9e9uSE0aqtGyE3aH2EhpKJCg4PYwS4LR13l47b0tlKx3RW2qu_V3wg_Y7jjwdcP-oQsTgKEaeAfSwYFtfn-P8Jt0X1pC0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853746125</pqid></control><display><type>article</type><title>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</title><source>ScienceDirect Journals</source><creator>Rumi, Elisa ; Cazzola, Mario</creator><creatorcontrib>Rumi, Elisa ; Cazzola, Mario</creatorcontrib><description>Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2016-10-695957</identifier><identifier>PMID: 28028026</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Bone Marrow - metabolism ; Bone Marrow - pathology ; Calreticulin - genetics ; Calreticulin - metabolism ; Disease Progression ; Gene Expression Regulation, Neoplastic ; Granulocytes - metabolism ; Granulocytes - pathology ; Humans ; Janus Kinase 2 - genetics ; Janus Kinase 2 - metabolism ; Megakaryocytes - metabolism ; Megakaryocytes - pathology ; Mutation ; Myeloproliferative Neoplasms ; Polycythemia Vera - diagnosis ; Polycythemia Vera - genetics ; Polycythemia Vera - mortality ; Polycythemia Vera - pathology ; Primary Myelofibrosis - diagnosis ; Primary Myelofibrosis - genetics ; Primary Myelofibrosis - mortality ; Primary Myelofibrosis - pathology ; Receptors, Thrombopoietin - genetics ; Receptors, Thrombopoietin - metabolism ; Review Series ; Risk Assessment ; Survival Analysis ; Thrombocythemia, Essential - diagnosis ; Thrombocythemia, Essential - genetics ; Thrombocythemia, Essential - mortality ; Thrombocythemia, Essential - pathology</subject><ispartof>Blood, 2017-02, Vol.129 (6), p.680-692</ispartof><rights>2017 American Society of Hematology</rights><rights>2017 by The American Society of Hematology.</rights><rights>2017 by The American Society of Hematology 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</citedby><cites>FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</cites><orcidid>0000-0002-7572-9504 ; 0000-0001-6984-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120337083$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28028026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rumi, Elisa</creatorcontrib><creatorcontrib>Cazzola, Mario</creatorcontrib><title>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</title><title>Blood</title><addtitle>Blood</addtitle><description>Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.</description><subject>Age Factors</subject><subject>Bone Marrow - metabolism</subject><subject>Bone Marrow - pathology</subject><subject>Calreticulin - genetics</subject><subject>Calreticulin - metabolism</subject><subject>Disease Progression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Granulocytes - metabolism</subject><subject>Granulocytes - pathology</subject><subject>Humans</subject><subject>Janus Kinase 2 - genetics</subject><subject>Janus Kinase 2 - metabolism</subject><subject>Megakaryocytes - metabolism</subject><subject>Megakaryocytes - pathology</subject><subject>Mutation</subject><subject>Myeloproliferative Neoplasms</subject><subject>Polycythemia Vera - diagnosis</subject><subject>Polycythemia Vera - genetics</subject><subject>Polycythemia Vera - mortality</subject><subject>Polycythemia Vera - pathology</subject><subject>Primary Myelofibrosis - diagnosis</subject><subject>Primary Myelofibrosis - genetics</subject><subject>Primary Myelofibrosis - mortality</subject><subject>Primary Myelofibrosis - pathology</subject><subject>Receptors, Thrombopoietin - genetics</subject><subject>Receptors, Thrombopoietin - metabolism</subject><subject>Review Series</subject><subject>Risk Assessment</subject><subject>Survival Analysis</subject><subject>Thrombocythemia, Essential - diagnosis</subject><subject>Thrombocythemia, Essential - genetics</subject><subject>Thrombocythemia, Essential - mortality</subject><subject>Thrombocythemia, Essential - pathology</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1TAQtBCIPgp_gJCPHBpY23FiX5BQgRapEhc4W46zKQYnDt68J_Xvm_SVAhcky5Z2Z2Z3PIy9FPBGCCPfdinnvpIgmkpA1VhtdfuI7YSWpgKQ8JjtAKCpatuKE_aM6AeAqJXUT9mJNLCdZsf8h-ivp0yRzniJ9JPTUvwShxjWO09n3E89L0hzngg5Hnza3zV4nHhInmgFJj7eYMpzySkOuNEPyCfM89of6Tl7MvhE-OL-PWXfPn38en5ZXX25-Hz-_qoKWtql0tZY04HpWm-UHpTWGNB2QxCDhFq3GKz1g7dgpJa9bkxfeyuUqsVWC6BO2buj7rzvRuwDTquT5OYSR19uXPbR_duZ4nd3nQ9OK6UN6FXg9b1Ayb_2SIsbIwVMya9e9uSE0aqtGyE3aH2EhpKJCg4PYwS4LR13l47b0tlKx3RW2qu_V3wg_Y7jjwdcP-oQsTgKEaeAfSwYFtfn-P8Jt0X1pC0</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Rumi, Elisa</creator><creator>Cazzola, Mario</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7572-9504</orcidid><orcidid>https://orcid.org/0000-0001-6984-8817</orcidid></search><sort><creationdate>20170209</creationdate><title>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</title><author>Rumi, Elisa ; Cazzola, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age Factors</topic><topic>Bone Marrow - metabolism</topic><topic>Bone Marrow - pathology</topic><topic>Calreticulin - genetics</topic><topic>Calreticulin - metabolism</topic><topic>Disease Progression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Granulocytes - metabolism</topic><topic>Granulocytes - pathology</topic><topic>Humans</topic><topic>Janus Kinase 2 - genetics</topic><topic>Janus Kinase 2 - metabolism</topic><topic>Megakaryocytes - metabolism</topic><topic>Megakaryocytes - pathology</topic><topic>Mutation</topic><topic>Myeloproliferative Neoplasms</topic><topic>Polycythemia Vera - diagnosis</topic><topic>Polycythemia Vera - genetics</topic><topic>Polycythemia Vera - mortality</topic><topic>Polycythemia Vera - pathology</topic><topic>Primary Myelofibrosis - diagnosis</topic><topic>Primary Myelofibrosis - genetics</topic><topic>Primary Myelofibrosis - mortality</topic><topic>Primary Myelofibrosis - pathology</topic><topic>Receptors, Thrombopoietin - genetics</topic><topic>Receptors, Thrombopoietin - metabolism</topic><topic>Review Series</topic><topic>Risk Assessment</topic><topic>Survival Analysis</topic><topic>Thrombocythemia, Essential - diagnosis</topic><topic>Thrombocythemia, Essential - genetics</topic><topic>Thrombocythemia, Essential - mortality</topic><topic>Thrombocythemia, Essential - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumi, Elisa</creatorcontrib><creatorcontrib>Cazzola, Mario</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumi, Elisa</au><au>Cazzola, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2017-02-09</date><risdate>2017</risdate><volume>129</volume><issue>6</issue><spage>680</spage><epage>692</epage><pages>680-692</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28028026</pmid><doi>10.1182/blood-2016-10-695957</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7572-9504</orcidid><orcidid>https://orcid.org/0000-0001-6984-8817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2017-02, Vol.129 (6), p.680-692
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335805
source ScienceDirect Journals
subjects Age Factors
Bone Marrow - metabolism
Bone Marrow - pathology
Calreticulin - genetics
Calreticulin - metabolism
Disease Progression
Gene Expression Regulation, Neoplastic
Granulocytes - metabolism
Granulocytes - pathology
Humans
Janus Kinase 2 - genetics
Janus Kinase 2 - metabolism
Megakaryocytes - metabolism
Megakaryocytes - pathology
Mutation
Myeloproliferative Neoplasms
Polycythemia Vera - diagnosis
Polycythemia Vera - genetics
Polycythemia Vera - mortality
Polycythemia Vera - pathology
Primary Myelofibrosis - diagnosis
Primary Myelofibrosis - genetics
Primary Myelofibrosis - mortality
Primary Myelofibrosis - pathology
Receptors, Thrombopoietin - genetics
Receptors, Thrombopoietin - metabolism
Review Series
Risk Assessment
Survival Analysis
Thrombocythemia, Essential - diagnosis
Thrombocythemia, Essential - genetics
Thrombocythemia, Essential - mortality
Thrombocythemia, Essential - pathology
title Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis,%20risk%20stratification,%20and%20response%20evaluation%20in%20classical%20myeloproliferative%20neoplasms&rft.jtitle=Blood&rft.au=Rumi,%20Elisa&rft.date=2017-02-09&rft.volume=129&rft.issue=6&rft.spage=680&rft.epage=692&rft.pages=680-692&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2016-10-695957&rft_dat=%3Cproquest_pubme%3E1853746125%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-59898b08b7a835f355ece9bfc1f20457ec99afa908252d568d4a913341a908c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1853746125&rft_id=info:pmid/28028026&rfr_iscdi=true