Loading…

Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease

Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-03, Vol.7 (1), p.44272, Article 44272
Main Authors: Hao, Xiaoke, Li, Chanxiu, Du, Lei, Yao, Xiaohui, Yan, Jingwen, Risacher, Shannon L., Saykin, Andrew J., Shen, Li, Zhang, Daoqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963
cites cdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963
container_end_page
container_issue 1
container_start_page 44272
container_title Scientific reports
container_volume 7
creator Hao, Xiaoke
Li, Chanxiu
Du, Lei
Yao, Xiaohui
Yan, Jingwen
Risacher, Shannon L.
Saykin, Andrew J.
Shen, Li
Zhang, Daoqiang
description Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene APOE , imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.
doi_str_mv 10.1038/srep44272
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877527576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</originalsourceid><addsrcrecordid>eNplkc1uEzEURi0EolXpghdAlthApQH_zow3SGkKbaWiLtq95fHcJK5m7GDPBKWr7ngGXo8nwWlKFMAbW_qOzr3yh9BrSj5QwuuPKcJSCFaxZ-iQESELxhl7vvc-QMcp3ZF8JFOCqpfogNVMUSbYIfrx1Xnn5_h6HGzooYjQwcr4AZ9G4zy-7M18E5-Dh8FZPEkpWGcGF3zCK2fw7SICFN_NGt8sTUyAp8YH76zp8DTEbHtk8cSbbp1cwtk56e4X4HqIvx5-JnzmEpgEr9CLmekSHD_dR-jmy-fb6UVxdX1-OZ1cFVbweihAWV6WbdNQYwVtW1W2XLasJiWxVFGqGksq0TJeScNlzRVppJKWiVlJVMmP0KetdTk2PbQW_BBNp5fR9SaudTBO_514t9DzsNKSCyVVlQXvngQxfBshDbp3yULXGQ9hTJrWVSVZJavNrLf_oHdhjPkfMqUI53VZC5ap91vKxpBylbPdMpToTb96129m3-xvvyP_tJmBky2QcuTnEPdG_mf7DZX6sZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903386842</pqid></control><display><type>article</type><title>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hao, Xiaoke ; Li, Chanxiu ; Du, Lei ; Yao, Xiaohui ; Yan, Jingwen ; Risacher, Shannon L. ; Saykin, Andrew J. ; Shen, Li ; Zhang, Daoqiang</creator><creatorcontrib>Hao, Xiaoke ; Li, Chanxiu ; Du, Lei ; Yao, Xiaohui ; Yan, Jingwen ; Risacher, Shannon L. ; Saykin, Andrew J. ; Shen, Li ; Zhang, Daoqiang ; Alzheimer’s Disease Neuroimaging Initiative ; Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><description>Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene APOE , imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep44272</identifier><identifier>PMID: 28291242</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/208/721 ; 631/378/1689 ; Algorithms ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - genetics ; Alzheimer Disease - pathology ; Alzheimer's disease ; Apolipoprotein E ; Apolipoproteins E - genetics ; Brain - diagnostic imaging ; Brain - metabolism ; Brain - pathology ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Cognitive Dysfunction - genetics ; Cognitive Dysfunction - pathology ; Cohort Studies ; Correlation analysis ; Data Mining ; Datasets as Topic ; Gene Expression ; Genetic Association Studies ; Genetic markers ; Genetic Predisposition to Disease ; Genetic variance ; Genetics ; Humanities and Social Sciences ; Humans ; Image processing ; Magnetic Resonance Imaging ; Medical imaging ; multidisciplinary ; Multivariate Analysis ; Neurodegenerative diseases ; Neuroimaging ; Phenotype ; Polymorphism, Single Nucleotide ; Science ; Severity of Illness Index ; Single-nucleotide polymorphism</subject><ispartof>Scientific reports, 2017-03, Vol.7 (1), p.44272, Article 44272</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</citedby><cites>FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1903386842/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1903386842?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28291242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Xiaoke</creatorcontrib><creatorcontrib>Li, Chanxiu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Yao, Xiaohui</creatorcontrib><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><title>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene APOE , imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.</description><subject>631/114/1305</subject><subject>631/208/721</subject><subject>631/378/1689</subject><subject>Algorithms</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Apolipoprotein E</subject><subject>Apolipoproteins E - genetics</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Cognitive Dysfunction - genetics</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Cohort Studies</subject><subject>Correlation analysis</subject><subject>Data Mining</subject><subject>Datasets as Topic</subject><subject>Gene Expression</subject><subject>Genetic Association Studies</subject><subject>Genetic markers</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic variance</subject><subject>Genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>multidisciplinary</subject><subject>Multivariate Analysis</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Science</subject><subject>Severity of Illness Index</subject><subject>Single-nucleotide polymorphism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc1uEzEURi0EolXpghdAlthApQH_zow3SGkKbaWiLtq95fHcJK5m7GDPBKWr7ngGXo8nwWlKFMAbW_qOzr3yh9BrSj5QwuuPKcJSCFaxZ-iQESELxhl7vvc-QMcp3ZF8JFOCqpfogNVMUSbYIfrx1Xnn5_h6HGzooYjQwcr4AZ9G4zy-7M18E5-Dh8FZPEkpWGcGF3zCK2fw7SICFN_NGt8sTUyAp8YH76zp8DTEbHtk8cSbbp1cwtk56e4X4HqIvx5-JnzmEpgEr9CLmekSHD_dR-jmy-fb6UVxdX1-OZ1cFVbweihAWV6WbdNQYwVtW1W2XLasJiWxVFGqGksq0TJeScNlzRVppJKWiVlJVMmP0KetdTk2PbQW_BBNp5fR9SaudTBO_514t9DzsNKSCyVVlQXvngQxfBshDbp3yULXGQ9hTJrWVSVZJavNrLf_oHdhjPkfMqUI53VZC5ap91vKxpBylbPdMpToTb96129m3-xvvyP_tJmBky2QcuTnEPdG_mf7DZX6sZc</recordid><startdate>20170314</startdate><enddate>20170314</enddate><creator>Hao, Xiaoke</creator><creator>Li, Chanxiu</creator><creator>Du, Lei</creator><creator>Yao, Xiaohui</creator><creator>Yan, Jingwen</creator><creator>Risacher, Shannon L.</creator><creator>Saykin, Andrew J.</creator><creator>Shen, Li</creator><creator>Zhang, Daoqiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170314</creationdate><title>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</title><author>Hao, Xiaoke ; Li, Chanxiu ; Du, Lei ; Yao, Xiaohui ; Yan, Jingwen ; Risacher, Shannon L. ; Saykin, Andrew J. ; Shen, Li ; Zhang, Daoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/1305</topic><topic>631/208/721</topic><topic>631/378/1689</topic><topic>Algorithms</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Apolipoprotein E</topic><topic>Apolipoproteins E - genetics</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Cognitive Dysfunction - genetics</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Cohort Studies</topic><topic>Correlation analysis</topic><topic>Data Mining</topic><topic>Datasets as Topic</topic><topic>Gene Expression</topic><topic>Genetic Association Studies</topic><topic>Genetic markers</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic variance</topic><topic>Genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>multidisciplinary</topic><topic>Multivariate Analysis</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Science</topic><topic>Severity of Illness Index</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Xiaoke</creatorcontrib><creatorcontrib>Li, Chanxiu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Yao, Xiaohui</creatorcontrib><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Xiaoke</au><au>Li, Chanxiu</au><au>Du, Lei</au><au>Yao, Xiaohui</au><au>Yan, Jingwen</au><au>Risacher, Shannon L.</au><au>Saykin, Andrew J.</au><au>Shen, Li</au><au>Zhang, Daoqiang</au><aucorp>Alzheimer’s Disease Neuroimaging Initiative</aucorp><aucorp>Alzheimer’s Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-03-14</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>44272</spage><pages>44272-</pages><artnum>44272</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene APOE , imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28291242</pmid><doi>10.1038/srep44272</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-03, Vol.7 (1), p.44272, Article 44272
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349597
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
631/208/721
631/378/1689
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - genetics
Alzheimer Disease - pathology
Alzheimer's disease
Apolipoprotein E
Apolipoproteins E - genetics
Brain - diagnostic imaging
Brain - metabolism
Brain - pathology
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - genetics
Cognitive Dysfunction - pathology
Cohort Studies
Correlation analysis
Data Mining
Datasets as Topic
Gene Expression
Genetic Association Studies
Genetic markers
Genetic Predisposition to Disease
Genetic variance
Genetics
Humanities and Social Sciences
Humans
Image processing
Magnetic Resonance Imaging
Medical imaging
multidisciplinary
Multivariate Analysis
Neurodegenerative diseases
Neuroimaging
Phenotype
Polymorphism, Single Nucleotide
Science
Severity of Illness Index
Single-nucleotide polymorphism
title Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20Outcome-relevant%20Brain%20Imaging%20Genetic%20Associations%20via%20Three-way%20Sparse%20Canonical%20Correlation%20Analysis%20in%20Alzheimer%E2%80%99s%20Disease&rft.jtitle=Scientific%20reports&rft.au=Hao,%20Xiaoke&rft.aucorp=Alzheimer%E2%80%99s%20Disease%20Neuroimaging%20Initiative&rft.date=2017-03-14&rft.volume=7&rft.issue=1&rft.spage=44272&rft.pages=44272-&rft.artnum=44272&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep44272&rft_dat=%3Cproquest_pubme%3E1877527576%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1903386842&rft_id=info:pmid/28291242&rfr_iscdi=true