Loading…
Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease
Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-...
Saved in:
Published in: | Scientific reports 2017-03, Vol.7 (1), p.44272, Article 44272 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963 |
container_end_page | |
container_issue | 1 |
container_start_page | 44272 |
container_title | Scientific reports |
container_volume | 7 |
creator | Hao, Xiaoke Li, Chanxiu Du, Lei Yao, Xiaohui Yan, Jingwen Risacher, Shannon L. Saykin, Andrew J. Shen, Li Zhang, Daoqiang |
description | Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene
APOE
, imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding. |
doi_str_mv | 10.1038/srep44272 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877527576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</originalsourceid><addsrcrecordid>eNplkc1uEzEURi0EolXpghdAlthApQH_zow3SGkKbaWiLtq95fHcJK5m7GDPBKWr7ngGXo8nwWlKFMAbW_qOzr3yh9BrSj5QwuuPKcJSCFaxZ-iQESELxhl7vvc-QMcp3ZF8JFOCqpfogNVMUSbYIfrx1Xnn5_h6HGzooYjQwcr4AZ9G4zy-7M18E5-Dh8FZPEkpWGcGF3zCK2fw7SICFN_NGt8sTUyAp8YH76zp8DTEbHtk8cSbbp1cwtk56e4X4HqIvx5-JnzmEpgEr9CLmekSHD_dR-jmy-fb6UVxdX1-OZ1cFVbweihAWV6WbdNQYwVtW1W2XLasJiWxVFGqGksq0TJeScNlzRVppJKWiVlJVMmP0KetdTk2PbQW_BBNp5fR9SaudTBO_514t9DzsNKSCyVVlQXvngQxfBshDbp3yULXGQ9hTJrWVSVZJavNrLf_oHdhjPkfMqUI53VZC5ap91vKxpBylbPdMpToTb96129m3-xvvyP_tJmBky2QcuTnEPdG_mf7DZX6sZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903386842</pqid></control><display><type>article</type><title>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hao, Xiaoke ; Li, Chanxiu ; Du, Lei ; Yao, Xiaohui ; Yan, Jingwen ; Risacher, Shannon L. ; Saykin, Andrew J. ; Shen, Li ; Zhang, Daoqiang</creator><creatorcontrib>Hao, Xiaoke ; Li, Chanxiu ; Du, Lei ; Yao, Xiaohui ; Yan, Jingwen ; Risacher, Shannon L. ; Saykin, Andrew J. ; Shen, Li ; Zhang, Daoqiang ; Alzheimer’s Disease Neuroimaging Initiative ; Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><description>Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene
APOE
, imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep44272</identifier><identifier>PMID: 28291242</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/208/721 ; 631/378/1689 ; Algorithms ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - genetics ; Alzheimer Disease - pathology ; Alzheimer's disease ; Apolipoprotein E ; Apolipoproteins E - genetics ; Brain - diagnostic imaging ; Brain - metabolism ; Brain - pathology ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Cognitive Dysfunction - genetics ; Cognitive Dysfunction - pathology ; Cohort Studies ; Correlation analysis ; Data Mining ; Datasets as Topic ; Gene Expression ; Genetic Association Studies ; Genetic markers ; Genetic Predisposition to Disease ; Genetic variance ; Genetics ; Humanities and Social Sciences ; Humans ; Image processing ; Magnetic Resonance Imaging ; Medical imaging ; multidisciplinary ; Multivariate Analysis ; Neurodegenerative diseases ; Neuroimaging ; Phenotype ; Polymorphism, Single Nucleotide ; Science ; Severity of Illness Index ; Single-nucleotide polymorphism</subject><ispartof>Scientific reports, 2017-03, Vol.7 (1), p.44272, Article 44272</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</citedby><cites>FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1903386842/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1903386842?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28291242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Xiaoke</creatorcontrib><creatorcontrib>Li, Chanxiu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Yao, Xiaohui</creatorcontrib><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><title>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene
APOE
, imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.</description><subject>631/114/1305</subject><subject>631/208/721</subject><subject>631/378/1689</subject><subject>Algorithms</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Apolipoprotein E</subject><subject>Apolipoproteins E - genetics</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Cognitive Dysfunction - genetics</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Cohort Studies</subject><subject>Correlation analysis</subject><subject>Data Mining</subject><subject>Datasets as Topic</subject><subject>Gene Expression</subject><subject>Genetic Association Studies</subject><subject>Genetic markers</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic variance</subject><subject>Genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>multidisciplinary</subject><subject>Multivariate Analysis</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Science</subject><subject>Severity of Illness Index</subject><subject>Single-nucleotide polymorphism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc1uEzEURi0EolXpghdAlthApQH_zow3SGkKbaWiLtq95fHcJK5m7GDPBKWr7ngGXo8nwWlKFMAbW_qOzr3yh9BrSj5QwuuPKcJSCFaxZ-iQESELxhl7vvc-QMcp3ZF8JFOCqpfogNVMUSbYIfrx1Xnn5_h6HGzooYjQwcr4AZ9G4zy-7M18E5-Dh8FZPEkpWGcGF3zCK2fw7SICFN_NGt8sTUyAp8YH76zp8DTEbHtk8cSbbp1cwtk56e4X4HqIvx5-JnzmEpgEr9CLmekSHD_dR-jmy-fb6UVxdX1-OZ1cFVbweihAWV6WbdNQYwVtW1W2XLasJiWxVFGqGksq0TJeScNlzRVppJKWiVlJVMmP0KetdTk2PbQW_BBNp5fR9SaudTBO_514t9DzsNKSCyVVlQXvngQxfBshDbp3yULXGQ9hTJrWVSVZJavNrLf_oHdhjPkfMqUI53VZC5ap91vKxpBylbPdMpToTb96129m3-xvvyP_tJmBky2QcuTnEPdG_mf7DZX6sZc</recordid><startdate>20170314</startdate><enddate>20170314</enddate><creator>Hao, Xiaoke</creator><creator>Li, Chanxiu</creator><creator>Du, Lei</creator><creator>Yao, Xiaohui</creator><creator>Yan, Jingwen</creator><creator>Risacher, Shannon L.</creator><creator>Saykin, Andrew J.</creator><creator>Shen, Li</creator><creator>Zhang, Daoqiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170314</creationdate><title>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</title><author>Hao, Xiaoke ; Li, Chanxiu ; Du, Lei ; Yao, Xiaohui ; Yan, Jingwen ; Risacher, Shannon L. ; Saykin, Andrew J. ; Shen, Li ; Zhang, Daoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/1305</topic><topic>631/208/721</topic><topic>631/378/1689</topic><topic>Algorithms</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Apolipoprotein E</topic><topic>Apolipoproteins E - genetics</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Cognitive Dysfunction - genetics</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Cohort Studies</topic><topic>Correlation analysis</topic><topic>Data Mining</topic><topic>Datasets as Topic</topic><topic>Gene Expression</topic><topic>Genetic Association Studies</topic><topic>Genetic markers</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic variance</topic><topic>Genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>multidisciplinary</topic><topic>Multivariate Analysis</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Science</topic><topic>Severity of Illness Index</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Xiaoke</creatorcontrib><creatorcontrib>Li, Chanxiu</creatorcontrib><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Yao, Xiaohui</creatorcontrib><creatorcontrib>Yan, Jingwen</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Xiaoke</au><au>Li, Chanxiu</au><au>Du, Lei</au><au>Yao, Xiaohui</au><au>Yan, Jingwen</au><au>Risacher, Shannon L.</au><au>Saykin, Andrew J.</au><au>Shen, Li</au><au>Zhang, Daoqiang</au><aucorp>Alzheimer’s Disease Neuroimaging Initiative</aucorp><aucorp>Alzheimer’s Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-03-14</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>44272</spage><pages>44272-</pages><artnum>44272</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene
APOE
, imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28291242</pmid><doi>10.1038/srep44272</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-03, Vol.7 (1), p.44272, Article 44272 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349597 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/208/721 631/378/1689 Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - genetics Alzheimer Disease - pathology Alzheimer's disease Apolipoprotein E Apolipoproteins E - genetics Brain - diagnostic imaging Brain - metabolism Brain - pathology Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - genetics Cognitive Dysfunction - pathology Cohort Studies Correlation analysis Data Mining Datasets as Topic Gene Expression Genetic Association Studies Genetic markers Genetic Predisposition to Disease Genetic variance Genetics Humanities and Social Sciences Humans Image processing Magnetic Resonance Imaging Medical imaging multidisciplinary Multivariate Analysis Neurodegenerative diseases Neuroimaging Phenotype Polymorphism, Single Nucleotide Science Severity of Illness Index Single-nucleotide polymorphism |
title | Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20Outcome-relevant%20Brain%20Imaging%20Genetic%20Associations%20via%20Three-way%20Sparse%20Canonical%20Correlation%20Analysis%20in%20Alzheimer%E2%80%99s%20Disease&rft.jtitle=Scientific%20reports&rft.au=Hao,%20Xiaoke&rft.aucorp=Alzheimer%E2%80%99s%20Disease%20Neuroimaging%20Initiative&rft.date=2017-03-14&rft.volume=7&rft.issue=1&rft.spage=44272&rft.pages=44272-&rft.artnum=44272&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep44272&rft_dat=%3Cproquest_pubme%3E1877527576%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-e9c366dbb1ac41dd96d35d28060c19119bc074d2375a358390b595c24f60963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1903386842&rft_id=info:pmid/28291242&rfr_iscdi=true |