Loading…

Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II

The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we h...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (11), p.2988-2993
Main Authors: Kale, Ravindra, Hebert, Annette E., Frankel, Laurie K., Sallans, Larry, Bricker, Terry M., Pospíšil, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-d7c9bcc33e5b6260c6aa53866bf5c22de08db1204db1203eccbc39fa7d7451913
cites cdi_FETCH-LOGICAL-c470t-d7c9bcc33e5b6260c6aa53866bf5c22de08db1204db1203eccbc39fa7d7451913
container_end_page 2993
container_issue 11
container_start_page 2988
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Kale, Ravindra
Hebert, Annette E.
Frankel, Laurie K.
Sallans, Larry
Bricker, Terry M.
Pospíšil, Pavel
description The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O₂•− and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn₄O₅Ca cluster and the nonheme iron. Additionally, O₂•− appears to be formed by the reduction of O₂ at either PheoD1 or QA. Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn₄O₅Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O₂•− formed by the reduction of O₂ either by PheoD1 •− or QA •−. The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.
doi_str_mv 10.1073/pnas.1618922114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5358366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480282</jstor_id><sourcerecordid>26480282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-d7c9bcc33e5b6260c6aa53866bf5c22de08db1204db1203eccbc39fa7d7451913</originalsourceid><addsrcrecordid>eNpd0ctvFCEcB3BiNHatnj1piL14mZY3zMWkaX1s0kQPeiYMw-yw2YERGOP-92XdPtQLJPw-fHn8AHiN0TlGkl7MweRzLLBqCcGYPQErjFrcCNaip2CFEJGNYoSdgBc5bxFCLVfoOTghigiOOFmB7eXkQ4TG-h7G3743xccA4wDL6OA1hib08JrAOcXifMiw21e237gAk-m9NbsM-yX5sIHzGEv0YfSdv8_4dljK-1zcBNfrl-DZUL17dTefgh-fPn6_-tLcfP28vrq8aSyTqDS9tG1nLaWOd4IIZIUxnCohuoFbQnqHVN9hgtifkTprO0vbwcheMo5bTE_Bh2PuvHST660LJZmdnpOfTNrraLz-txL8qDfxl-aUKypEDXh3DIi5eJ2tL86ONobgbNGYCc6UrOj93Skp_lxcLnry2brdzgQXl6yxkhwzhtiBnv1Ht3FJof5BVQq3EktGq7o4KptizskNDzfGSB-arQ_N1o_Nrjve_v3QB3_f3QreHME2l5ge64IpVBG9BcK8r-U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881971743</pqid></control><display><type>article</type><title>Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II</title><source>Access via JSTOR</source><source>PubMed Central</source><creator>Kale, Ravindra ; Hebert, Annette E. ; Frankel, Laurie K. ; Sallans, Larry ; Bricker, Terry M. ; Pospíšil, Pavel</creator><creatorcontrib>Kale, Ravindra ; Hebert, Annette E. ; Frankel, Laurie K. ; Sallans, Larry ; Bricker, Terry M. ; Pospíšil, Pavel ; Univ. of Cincinnati, Cincinnati, OH (United States)</creatorcontrib><description>The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O₂•− and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn₄O₅Ca cluster and the nonheme iron. Additionally, O₂•− appears to be formed by the reduction of O₂ at either PheoD1 or QA. Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn₄O₅Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O₂•− formed by the reduction of O₂ either by PheoD1 •− or QA •−. The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1618922114</identifier><identifier>PMID: 28265052</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Mass spectrometry ; Oxidation ; Oxygen ; photo inhibition ; photosynthesis ; Photosystem II ; Proteins ; reactive oxygen species</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (11), p.2988-2993</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 14, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-d7c9bcc33e5b6260c6aa53866bf5c22de08db1204db1203eccbc39fa7d7451913</citedby><cites>FETCH-LOGICAL-c470t-d7c9bcc33e5b6260c6aa53866bf5c22de08db1204db1203eccbc39fa7d7451913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480282$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480282$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28265052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465487$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kale, Ravindra</creatorcontrib><creatorcontrib>Hebert, Annette E.</creatorcontrib><creatorcontrib>Frankel, Laurie K.</creatorcontrib><creatorcontrib>Sallans, Larry</creatorcontrib><creatorcontrib>Bricker, Terry M.</creatorcontrib><creatorcontrib>Pospíšil, Pavel</creatorcontrib><creatorcontrib>Univ. of Cincinnati, Cincinnati, OH (United States)</creatorcontrib><title>Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O₂•− and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn₄O₅Ca cluster and the nonheme iron. Additionally, O₂•− appears to be formed by the reduction of O₂ at either PheoD1 or QA. Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn₄O₅Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O₂•− formed by the reduction of O₂ either by PheoD1 •− or QA •−. The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.</description><subject>Amino acids</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Mass spectrometry</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>photo inhibition</subject><subject>photosynthesis</subject><subject>Photosystem II</subject><subject>Proteins</subject><subject>reactive oxygen species</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0ctvFCEcB3BiNHatnj1piL14mZY3zMWkaX1s0kQPeiYMw-yw2YERGOP-92XdPtQLJPw-fHn8AHiN0TlGkl7MweRzLLBqCcGYPQErjFrcCNaip2CFEJGNYoSdgBc5bxFCLVfoOTghigiOOFmB7eXkQ4TG-h7G3743xccA4wDL6OA1hib08JrAOcXifMiw21e237gAk-m9NbsM-yX5sIHzGEv0YfSdv8_4dljK-1zcBNfrl-DZUL17dTefgh-fPn6_-tLcfP28vrq8aSyTqDS9tG1nLaWOd4IIZIUxnCohuoFbQnqHVN9hgtifkTprO0vbwcheMo5bTE_Bh2PuvHST660LJZmdnpOfTNrraLz-txL8qDfxl-aUKypEDXh3DIi5eJ2tL86ONobgbNGYCc6UrOj93Skp_lxcLnry2brdzgQXl6yxkhwzhtiBnv1Ht3FJof5BVQq3EktGq7o4KptizskNDzfGSB-arQ_N1o_Nrjve_v3QB3_f3QreHME2l5ge64IpVBG9BcK8r-U</recordid><startdate>20170314</startdate><enddate>20170314</enddate><creator>Kale, Ravindra</creator><creator>Hebert, Annette E.</creator><creator>Frankel, Laurie K.</creator><creator>Sallans, Larry</creator><creator>Bricker, Terry M.</creator><creator>Pospíšil, Pavel</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170314</creationdate><title>Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II</title><author>Kale, Ravindra ; Hebert, Annette E. ; Frankel, Laurie K. ; Sallans, Larry ; Bricker, Terry M. ; Pospíšil, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-d7c9bcc33e5b6260c6aa53866bf5c22de08db1204db1203eccbc39fa7d7451913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino acids</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Mass spectrometry</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>photo inhibition</topic><topic>photosynthesis</topic><topic>Photosystem II</topic><topic>Proteins</topic><topic>reactive oxygen species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kale, Ravindra</creatorcontrib><creatorcontrib>Hebert, Annette E.</creatorcontrib><creatorcontrib>Frankel, Laurie K.</creatorcontrib><creatorcontrib>Sallans, Larry</creatorcontrib><creatorcontrib>Bricker, Terry M.</creatorcontrib><creatorcontrib>Pospíšil, Pavel</creatorcontrib><creatorcontrib>Univ. of Cincinnati, Cincinnati, OH (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kale, Ravindra</au><au>Hebert, Annette E.</au><au>Frankel, Laurie K.</au><au>Sallans, Larry</au><au>Bricker, Terry M.</au><au>Pospíšil, Pavel</au><aucorp>Univ. of Cincinnati, Cincinnati, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-03-14</date><risdate>2017</risdate><volume>114</volume><issue>11</issue><spage>2988</spage><epage>2993</epage><pages>2988-2993</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O₂•− and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn₄O₅Ca cluster and the nonheme iron. Additionally, O₂•− appears to be formed by the reduction of O₂ at either PheoD1 or QA. Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn₄O₅Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O₂•− formed by the reduction of O₂ either by PheoD1 •− or QA •−. The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28265052</pmid><doi>10.1073/pnas.1618922114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (11), p.2988-2993
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5358366
source Access via JSTOR; PubMed Central
subjects Amino acids
BASIC BIOLOGICAL SCIENCES
Biological Sciences
Mass spectrometry
Oxidation
Oxygen
photo inhibition
photosynthesis
Photosystem II
Proteins
reactive oxygen species
title Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino%20acid%20oxidation%20of%20the%20D1%20and%20D2%20proteins%20by%20oxygen%20radicals%20during%20photoinhibition%20of%20Photosystem%20II&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kale,%20Ravindra&rft.aucorp=Univ.%20of%20Cincinnati,%20Cincinnati,%20OH%20(United%20States)&rft.date=2017-03-14&rft.volume=114&rft.issue=11&rft.spage=2988&rft.epage=2993&rft.pages=2988-2993&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1618922114&rft_dat=%3Cjstor_pubme%3E26480282%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-d7c9bcc33e5b6260c6aa53866bf5c22de08db1204db1203eccbc39fa7d7451913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881971743&rft_id=info:pmid/28265052&rft_jstor_id=26480282&rfr_iscdi=true